• BMJ · Jan 2011

    Randomized Controlled Trial Multicenter Study

    Multimodal system designed to reduce errors in recording and administration of drugs in anaesthesia: prospective randomised clinical evaluation.

    • Alan F Merry, Craig S Webster, Jacqueline Hannam, Simon J Mitchell, Robert Henderson, Papaarangi Reid, Kylie-Ellen Edwards, Anisoara Jardim, Nick Pak, Jeremy Cooper, Lara Hopley, Chris Frampton, and Timothy G Short.
    • Department of Anaesthesiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92-019, Auckland 1142, New Zealand. a.merry@auckland.ac.nz
    • BMJ. 2011 Jan 1;343:d5543.

    ObjectiveTo clinically evaluate a new patented multimodal system (SAFERSleep) designed to reduce errors in the recording and administration of drugs in anaesthesia.DesignProspective randomised open label clinical trial.SettingFive designated operating theatres in a major tertiary referral hospital.ParticipantsEighty nine consenting anaesthetists managing 1075 cases in which there were 10,764 drug administrations.InterventionUse of the new system (which includes customised drug trays and purpose designed drug trolley drawers to promote a well organised anaesthetic workspace and aseptic technique; pre-filled syringes for commonly used anaesthetic drugs; large legible colour coded drug labels; a barcode reader linked to a computer, speakers, and touch screen to provide automatic auditory and visual verification of selected drugs immediately before each administration; automatic compilation of an anaesthetic record; an on-screen and audible warning if an antibiotic has not been administered within 15 minutes of the start of anaesthesia; and certain procedural rules-notably, scanning the label before each drug administration) versus conventional practice in drug administration with a manually compiled anaesthetic record.Main Outcome MeasuresPrimary: composite of errors in the recording and administration of intravenous drugs detected by direct observation and by detailed reconciliation of the contents of used drug vials against recorded administrations; and lapses in responding to an intermittent visual stimulus (vigilance latency task). Secondary: outcomes in patients; analyses of anaesthetists' tasks and assessments of workload; evaluation of the legibility of anaesthetic records; evaluation of compliance with the procedural rules of the new system; and questionnaire based ratings of the respective systems by participants.ResultsThe overall mean rate of drug errors per 100 administrations was 9.1 (95% confidence interval 6.9 to 11.4) with the new system (one in 11 administrations) and 11.6 (9.3 to 13.9) with conventional methods (one in nine administrations) (P = 0.045 for difference). Most were recording errors, and, though fewer drug administration errors occurred with the new system, the comparison with conventional methods did not reach significance. Rates of errors in drug administration were lower when anaesthetists consistently applied two key principles of the new system (scanning the drug barcode before administering each drug and keeping the voice prompt active) than when they did not: mean 6.0 (3.1 to 8.8) errors per 100 administrations v 9.7 (8.4 to 11.1) respectively (P = 0.004). Lapses in the vigilance latency task occurred in 12% (58/471) of cases with the new system and 9% (40/473) with conventional methods (P = 0.052). The records generated by the new system were more legible, and anaesthetists preferred the new system, particularly in relation to long, complex, and emergency cases. There were no differences between new and conventional systems in respect of outcomes in patients or anaesthetists' workload.ConclusionsThe new system was associated with a reduction in errors in the recording and administration of drugs in anaesthesia, attributable mainly to a reduction in recording errors. Automatic compilation of the anaesthetic record increased legibility but also increased lapses in a vigilance latency task and decreased time spent watching monitors. Trial registration Australian New Zealand Clinical Trials Registry No 12608000068369.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.