• Neuroscience · Apr 2010

    Anatomically specific patterns of glial activation in the periaqueductal gray of the sub-population of rats showing pain and disability following chronic constriction injury of the sciatic nerve.

    • D Mor, A L Bembrick, P J Austin, P M Wyllie, N J Creber, G S Denyer, and K A Keay.
    • School of Medical Sciences (Anatomy and Histology), The University of Sydney, NSW 2006, Australia.
    • Neuroscience. 2010 Apr 14;166(4):1167-84.

    AbstractNeuropathic pain conditions for which treatment is sought are characterized by complex behavioural disturbances, as well as "pain." Recent studies using chronic constriction injury of the sciatic nerve have shown that rats develop three distinct patterns of disability characterized by changes in social-interactions and sleep-wake cycle behaviours post-injury: (i) Persistent Disability, (ii) Transient Disability and (iii) No Disability. These patterns occur despite all rats showing identical levels of allodynia and hyperalgesia (i.e., pain). In rats, social-interactions and sleep-wake cycle behaviours are regulated in part, by neural networks, which converge on the periaqueductal grey (PAG). We sought therefore to identify neural adaptations in the PAG, 6 days following chronic constriction injury (CCI), the time at which rats in which disabilities persist are first distinguished from those without disabilities (i.e., No Disability and Transient Disability). GeneChips, RT-PCR and Western blotting revealed the select up-regulation in translation and transcription of glial fibrillary acidic protein (GFAP) and Vimentin in rats with Persistent Disability. Significant increases in GFAP immunoreactivity were localized histologically to the lateral and caudal ventrolateral columns of the PAG. This anatomically specific pattern of increased GFAP suggests activation of astrocytes by select neural pathways, which likely include afferents of both spinal and nucleus of the solitary tract (NTS) origin. The PAG columns in which astrocytes are activated play significant roles in modulating both social-interactions and the sleep-wake cycle. It is possible therefore that the persistent disabilities seen in a subgroup of CCI rats are in part a functional consequence of this specific pattern of astrocyte activation.Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.