• Anesthesiology · May 2003

    Local anesthetics modulate neuronal calcium signaling through multiple sites of action.

    • Fang Xu, Zayra Garavito-Aguilar, Esperanza Recio-Pinto, Jin Zhang, and Thomas J J Blanck.
    • Department of Anesthesiology, NYU Medical Center, 550 First Avenue, New York, New York 10016, USA. fang.xu@med.nyu.edu
    • Anesthesiology. 2003 May 1;98(5):1139-46.

    BackgroundLocal anesthetics (LAs) are known to inhibit voltage-dependent Na+ channels, as well as K+ and Ca2+ channels, but with lower potency. Since cellular excitability and responsiveness are largely determined by intracellular Ca2+ availability, sites along the Ca2+ signaling pathways may be targets of LAs. This study was aimed to investigate the LA effects on depolarization and receptor-mediated intracellular Ca2+ changes and to examine the role of Na+ and K+ channels in such functional responses.MethodsEffects of bupivacaine, ropivacaine, mepivacaine, and lidocaine (0.1-2.3 mm) on evoked [Ca2+](i) transients were investigated in neuronal SH-SY5Y cell suspensions using Fura-2 as the intracellular Ca2+ indicator. Potassium chloride (KCl, 100 mm) and carbachol (1 mm) were individually or sequentially applied to evoke increases in intracellular Ca2+. Coapplication of LA and Na+/K+ channel blockers was used to evaluate the role of Na+ and K+ channels in the LA effect on the evoked [Ca2+](i) transients.ResultsAll four LAs concentration-dependently inhibited both KCl- and carbachol-evoked [Ca2+](i) transients with the potency order bupivacaine > ropivacaine > lidocaine >/= mepivacaine. The carbachol-evoked [Ca2+](i) transients were more sensitive to LAs without than with a KCl prestimulation, whereas the LA-effect on the KCl-evoked [Ca2+](i) transients was not uniformly affected by a carbachol prestimulation. Na+ channel blockade did not alter the evoked [Ca2+](i) transients with or without a LA. In the absence of LA, K+ channel blockade increased the KCl-, but decreased the carbachol-evoked [Ca2+](i) transients. A coapplication of LA and K+ channel blocker resulted in larger inhibition of both KCl- and carbachol-evoked [Ca2+](i) transients than by LA alone.ConclusionsDifferent and overlapping sites of action of LAs are involved in inhibiting the KCl- and carbachol-evoked [Ca2+](i) transients, including voltage-dependent Ca2+ channels, a site associated with the caffeine-sensitive Ca2+ store and a possible site associated with the IP(3)-sensitive Ca2+ store, and a site in the muscarinic pathway. K+ channels, but not Na+ channels, seem to modulate the evoked [Ca2+](i) transients, as well as the LA-effects on such responses.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.