• Am J Emerg Med · Jul 1998

    Utility of monitoring capnography, pulse oximetry, and vital signs in the detection of airway mishaps: a hyperoxemic animal model.

    • M P Poirier, J A Gonzalez Del-Rey, C M McAneney, and G A DiGiulio.
    • Division of Emergency Medicine, Children's Hospital Medical Center, Cincinnati, OH, USA.
    • Am J Emerg Med. 1998 Jul 1;16(4):350-2.

    AbstractThis study was undertaken to determine the time interval for changes in end-tidal CO2, oxygen saturation (SaO2), heart rate (HR), and blood pressure (BP) in response to an acute airway obstruction or hypopharyngeal extubation in a hyperoxemic model. Complete and partial airway obstructions were simulated with complete and partial cross-clamping of an endotracheal (ET) tube in five anesthetized, nonparalyzed, mechanically ventilated Yorkshire minipigs with initial PAo2 of > 400 mm Hg. Placement of the ET tube into the hypopharynx was performed to simulate accidental extubation. Both sidestream (SS) and mainstream (MS) capnography were used. Continuous pulse oximetry monitored SaO2, femoral arterial catheter monitored systolic BP, and electrocardiograph monitored HR. The time intervals for the capnograph wave to flatten and for the monitor to display zero were recorded after each airway alteration. The time interval to a change in the initial HR of 10 beats/min, a change of initial systolic BP of 10 mm Hg, and a change of initial SaO2 of 5% were recorded. Experiments were carried out for 180 seconds, and 25 trials were performed. HR, systolic BP, and SaO2 did not change for the 180-second duration of the trials. Complete obstruction produced a flattening of the SS and MS waveform in 8 +/- 2 seconds and 6 +/- 2 seconds, respectively. The SS and MS monitors displayed zero in 19 +/- 1 seconds and 68 +/- 7 seconds, respectively. Partial obstruction did not produce flattening of the wave or a monitor displaying zero. Hypopharyngeal extubation produced a flattening of the SS and MS waveform in 7 +/- 1 seconds and 7 +/- 2 seconds, respectively. The SS and MS monitors displayed zero in 18 +/- 3 seconds and 76 +/- 16 seconds, respectively. Continuous end-tidal CO2 capnography detects acute airway obstruction and hypopharyngeal extubation more rapidly than does pulse oximetry or vital sign monitoring in a hyperoxemic porcine model.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…