• Anesthesiology · Jan 2010

    Predicting the unpredictable: a new prediction model for operating room times using individual characteristics and the surgeon's estimate.

    • Marinus J C Eijkemans, Mark van Houdenhoven, Tien Nguyen, Eric Boersma, Ewout W Steyerberg, and Geert Kazemier.
    • Department of Public Health, Center for Medical Decision Sciences, Erasmus MC University Medical Center, The Netherlands. m.j.c.eijkemans@umcutrecht.nl
    • Anesthesiology. 2010 Jan 1;112(1):41-9.

    Background: Routine predictions made by surgeons or historical mean durations have only limited capacity to predict operating room (OR) time. The authors aimed to devise a prediction model using the surgeon's estimate and characteristics of the surgical team, the operation, and the patient.Methods: Seventeen thousand four hundred twelve consecutive, elective operations from the general surgical department in an academic hospital were analyzed. The outcome was OR time, and the potential predictive factors were surgeon's estimate, number of planned procedures, number and experience of surgeons and anesthesiologists, patient's age and sex, number of previous hospital admissions, body mass index, and eight cardiovascular risk factors. Linear mixed modeling on the logarithm of the total OR time was performed.Results: Characteristics of the operation and the team had the largest predictive performance, whereas patient characteristics had a modest but distinct effect on OR time: operations were shorter for patients older than 60 yr, and higher body mass index was associated with longer OR times. The surgeon's estimate had an independent and substantial contribution to the prediction, and the final model explained 27% of the residual variation in log (OR time). Using the prediction model instead of the surgeon's prediction based on historical averages would reduce shorter-than-predicted and longer-than-predicted OR time by 2.8 and 6.6 min per case (a relative reduction of 12 and 25%, respectively), assessed on independent validation data.Conclusions: Detailed information on the operative session, the team, and the patient substantially improves the prediction of OR times, but the surgeon's estimate remains important. The prediction model may be used in OR scheduling.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…