• Spine · May 2016

    Identification of Differential Genes Expression Profiles and Pathways of Bone Marrow Mesenchymal Stem Cells of Adolescent Idiopathic Scoliosis Patients by Microarray and Integrated Gene Network Analysis.

    • Qianyu Zhuang, Wenzhe Mao, Pengchao Xu, Hongling Li, Zhao Sun, Shugang Li, Guixing Qiu, Jing Li, and Jianguo Zhang.
    • *Department of Orthopedics, Peking Union Medical College Hospital, Beijing, P.R. China †Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China.
    • Spine. 2016 May 1; 41 (10): 840-55.

    Study DesignMicroarray approach and integrated gene network analysis.ObjectiveTo explore the differential genetic expression profile, gene ontology terms, and Kyoto Encyclopedia of Genes and Genomes pathways in bone marrow mesenchymal stem cells (BM-MSCs) of idiopathic scoliosis (AIS) and non-AIS controls.Summary Of Background DataThe pathogenesis of adolescent AIS and the accompanying generalized osteopenia remain unclear. Our previous study suggested increased proliferation ability and decreased osteogenic differentiation ability of BM-MSCs of AIS. Therefore, we hypothesized that MSCs may play a significant role in the etiology and pathogenesis of AIS.MethodsIn this study, microarray analysis was used to identify differentially expressed genes (DEGs) of BM-MSCs from AIS patients compared with those from healthy individuals. Comprehensive bioinformatics analyses were then used to enrich datasets for gene ontology and pathway. Based on the gene signal transduction network analysis of DEGs contained in significant pathways, 24 potential crucial genes were selected for validation by reverse transcription polymerase chain reaction.ResultsThere are 1027 previously unrecognized DEGs in BM-MSCs from AIS patients. Pathway analysis revealed dysregulated mitogen-activated protein kinase (MAPK) signaling pathway, PI3K-Akt signaling pathway, calcium signaling pathway, peroxisome proliferator-activated receptor (PPAR) signaling pathway, ubiquitin-mediated proteolysis, and Notch signaling pathway, all of which have been reported to play an important role in regulating the osteogenic or adipogenic differentiation of MSCs. Furthermore, gene signal transduction networks analysis indicated that mitogen-activated protein kinase kinase 1 (MAP2K1), SMAD family member 3 (SMAD3), homeobox C6 (HOXC6), heat shock 70kDa protein 6 (HSPA6), general transcription factor IIi (GTF2I), CREB binding protein (CREBBP), phosphoinositide-3-kinase, regulatory subunit 2 (PIK3R2), and dual specificity phosphatase 2 (DUSP2) may play essential roles in AIS pathogenesis and accompanied osteopenia.ConclusionThis study reports the differential genes expression profiles of BM-MSCs from AIS patients and related potential pathways for the first time. These previously unrecognized genes and molecular pathways might play a significant role in not only the causal mechanism of osteopenia in AIS, but also the AIS initiation and development. The identification of these candidate genes provides novel insight into the underlying etiological mechanisms of AIS.Level Of EvidenceN/A.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.