• Anesthesiology · Jul 1997

    Permissive hypercapnia with and without expiratory washout in patients with severe acute respiratory distress syndrome.

    • P Kalfon, G S Rao, L Gallart, L Puybasset, P Coriat, and J J Rouby.
    • Department of Anesthesiology, Hôpital de la Pitié-Salpétrièr, University of Paris VI, France.
    • Anesthesiology. 1997 Jul 1;87(1):6-17; discussion 25A-26A.

    BackgroundPermissive hypercapnia is a ventilatory strategy aimed at avoiding lung volutrauma in patients with severe acute respiratory distress syndrome (ARDS). Expiratory washout (EWO) is a modality of tracheal gas insufflation that enhances carbon dioxide removal during mechanical ventilation by reducing dead space. The goal of this prospective study was to determine the efficacy of EWO in reducing the partial pressure of carbon dioxide (PaCO2) in patients with severe ARDS treated using permissive hypercapnia.MethodsSeven critically ill patients with severe ARDS (lung injury severity score, 3.1 +/- 0.3) and no contraindications for permissive hypercapnia were studied. On the first day, hemodynamic and respiratory parameters were measured and the extent of lung hyperdensities was assessed using computed tomography. A positive end-expiratory pressure equal to the opening pressure identified on the pressure-volume curve was applied. Tidal volume was reduced until a plateau airway pressure of 25 cm H2O was reached. On the second day, after implementation of permissive hypercapnia, EWO was instituted at a flow of 15 l/min administered during the entire expiratory phase into the trachea through the proximal channel of an endotracheal tube using a ventilator equipped with a special flow generator. Cardiorespiratory parameters were studied under three conditions: permissive hypercapnia, permissive hypercapnia with EWO, and permissive hypercapnia.ResultsDuring permissive hypercapnia, EWO decreased PaCO2 from 76 +/- 4 mmHg to 53 +/- 3 mmHg (-30%; P < 0.0001), increased pH from 7.20 +/- 0.03 to 7.34 +/- 0.04 (P < 0.0001), and increased PaO2 from 205 +/- 28 to 296 +/- 38 mmHg (P < 0.05). The reduction in PaCO2 was accompanied by an increase in end-inspiratory plateau pressure from 26 +/- 1 to 32 +/- 2 cm H2O (P = 0.001). Expiratory washout also decreased cardiac index from 4.6 +/- 0.4 to 3.7 +/- 0.3 l.min-1.m-2 (P < 0.01), mean pulmonary arterial pressure from 28 +/- 2 to 25 +/- 2 mmHg (P < 0.01), and true pulmonary shunt from 47 +/- 2 to 36 +/- 3% (P < 0.01).ConclusionsExpiratory washout is an effective and easy-to-use ventilatory modality to reduce PaCO2 and increase pH during permissive hypercapnia. However, it significantly increases airway pressures and lung volume through expiratory flow limitation, reexposing some patients to a risk of lung volutrauma if the extrinsic positive end-expiratory pressure is not substantially reduced.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.