• Neuroscience · Jan 2002

    Pathological changes of isolated spinal cord axons in response to mechanical stretch.

    • R Shi and J D Pryor.
    • Department of Basic Medical Sciences, Center for Paralysis Research, Institute for Applied Neurology, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907-1244, USA. riyi@vet.purdue.edu
    • Neuroscience. 2002 Jan 1;110(4):765-77.

    AbstractWhite matter strips extracted from adult guinea-pig spinal cords were maintained in vitro and studied physiologically using a double sucrose gap technique and anatomically using a horseradish peroxidase assay. The amplitude of compound action potentials was monitored continuously before, during, and after elongation. Three types of conduction blocks resulting from stretch injury were identified: an immediate, spontaneously reversible component, which may result from a transient increase in membrane permeability and consequent disturbance of ionic distribution; a second component that was irreversible within 30-60 min of recording, perhaps resulting from profound axolemmal disruption; and a third component, which may be due to perturbation of the myelin sheath, that was reversible with application of 100 microM of the potassium channel blocker, 4-aminopyridine. The intensity of the conduction deficits correlated with the extent of initial stretch over a full range of severity. Stimulus-response data indicate that mechanical damage to axons in stretch was evenly distributed across the caliber spectrum. Morphological examinations revealed that a small portion of axons exhibited membrane damage at 2 min following stretch and appeared to be largely sealed at 30 min after injury. Further, in the entire length of the cord strip subjected to stretch, axons closer to the surface were found to be more likely to suffer membrane damage, which distinguished stretch injury from compression injury. In summary, we have developed an in vitro model of axonal stretch that provides the ability to monitor changes in the properties of central myelinated axons following stretch injury in the absence of pathological variables related to vascular damage. This initial investigation found no evidence of secondary deterioration of axons in the first 30 min after stretch in vitro, although there was evidence of both transient and lasting physiological and anatomical damage to axons and their myelin sheaths.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.