• Neuroscience · May 2011

    Comparative Study

    Sleep-waking discharge profiles of median preoptic and surrounding neurons in mice.

    • K Sakai.
    • INSERM U1028, CNRS UMR5292, Neuroscience Research Center, University Lyon 1, Integrative Physiology of Brain Arousal System, Lyon, France. sakai@univ-lyon1.fr
    • Neuroscience. 2011 May 19;182:144-61.

    AbstractThe median preoptic nucleus (MnPO), part of the anteroventral third ventricular region, plays a key role in body fluid homeostasis and cardiovascular regulation. Recently, a cluster of neurons showing sleep-related c-fos immunoreactivity was found in the rat MnPO, and a subsequent electrophysiological study found that nearly 76% of rat MnPO neurons exhibit increased discharge during sleep. In a recent single unit recording study in mice, we found that sleep-active neurons are not localized in any specific region of the preoptic/basal forebrain (POA/BFB). However, the discharge profiles of mouse MnPO neurons across wake-sleep states remained to be determined. In this study, we therefore examined whether the mouse MnPO contains a high proportion of sleep-active neurons and constitutes a distinct cluster of sleep-promoting neurons in the median preoptic region. We recorded a total of 234 single units in the MnPO, the laterally adjacent peri-MnPO, the dorsally adjacent medial septum (MS), and the ventrally adjacent periventricular (Pe)/medial preoptic (MPO) area (Pe/MPO). We found that the MnPO contained similar proportions of sleep-active (31.9%) and waking (W)-active (33.0%) neurons, together with many waking/paradoxical sleep (W/PS)-active neurons (23.4%), whereas the Pe/MPO and MS contained a high proportion of sleep-active neurons (66.0 and 62.9%, respectively), while the peri-MnPO contained a high proportion of W-active neurons (57.1%). In the MnPO, both W-active and W/PS-active neurons were distributed throughout the nucleus, whereas sleep-active neurons were mostly located on its border. Only slowly discharging (<5 Hz) slow-wave sleep (SWS)/PS-selective neurons were found in the MnPO. During the transition from W to SWS, all of these SWS/PS-selective neurons fired not before, but after, sleep onset, with a gradual increase in discharge rate. In addition to its well-known homeostatic and cardiovascular functions, the MnPO might modulate the sleep-waking cycle by playing different roles in sleep/wake state regulation.Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.