• Spine · Nov 1999

    Augmentation of an anterior solid rod construct with threaded cortical bone dowels. A biomechanical study.

    • D A Spiegel, D S Drummond, B W Cunningham, M Kanayama, C J Haggerty, P C McAfee, and J P Dormans.
    • Children's Hospital of Philadelphia, Pennsylvania, USA.
    • Spine. 1999 Nov 15;24(22):2300-6; discussion 2307.

    Study DesignThis static, nondestructive, in vitro biomechanical study examines anterior solid rod construct stiffness following the addition of multilevel, threaded cortical bone dowels in a bovine model. A comparison is made with a clinically relevant posterior construct with and without an anterior release.ObjectivesTo determine if the addition of solid, multilevel disc space implants will increase construct rigidity, while maintaining or enhancing anterior column length.Summary Of Background DataAnterior instrumentation for thoracolumbar and lumbar scoliosis has achieved greater correction and preserved distal motion segments; however, kyphosis over the instrumented segments and nonunion have been observed more frequently than with posterior segmental spinal instrumentation.MethodFifteen calf spines underwent mechanical testing. Group A (n = 7) included anterior constructs: 1) intact, 2) anterior release/rod/rib graft (L2-L5), and 3) anterior release/rod/dowels (L2-L5). Group B (n = 8) included posterior constructs: 1) intact, 2) posterior rod without anterior release (T13-L5), 3) posterior rod (T13-L5)/anterior release/rib graft (L2-L5). The protocol included axial compression (-600 N), axial rotation (+7 Nm), flexion/extension (+7.5 Nm), and lateral bending (+7.5 Nm). An anterior extensometer measured segmental displacements to calculate construct stiffness. Lateral radiographs evaluated alignment for the anterior constructs. Statistical analysis involved a one way analysis of variance (ANOVA) and a Student-Newman-Keuls post hoc test.ResultsAll reconstructions restored stiffness to intact values with the exception of the dowels alone in axial rotation. The rod/dowel construct was stiffer than all other groups in axial compression, flexion/extension, and lateral bending, with the exception of the posterior rod without discectomy, which was superior in flexion and statistically similar in extension, lateral bending, and axial rotation. The anterior construct with rib graft was equivalent to the posterior construct with rib graft in all modes of testing. The dowels created greater lordosis than the bicortical rib grafts.ConclusionsDisc space augmentation increased stiffness except in axial rotation, in which values were restored to the intact level. Stiffness was superior to a clinically relevant posterior instrumentation comparison group following anterior release, and was equivalent to a posterior construct without anterior release except in anterior flexion. In addition, the implants enhanced lordosis. Increased rigidity should improve rates of arthrodesis, while maintenance of sagittal alignment may prevent pathologic compensatory curves in adjacent spinal segments. Further research is required to determine the optimal method of achieving structural interspace support.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.