• Spine · Dec 2007

    Human internal disc strains in axial compression measured noninvasively using magnetic resonance imaging.

    • Grace D O'Connell, Wade Johannessen, Edward J Vresilovic, and Dawn M Elliott.
    • McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104-6081, USA.
    • Spine. 2007 Dec 1;32(25):2860-8.

    Study DesignInternal deformations and strains were measured within intact human motion segments.ObjectiveQuantify 2-dimensional internal deformation and strain in compression of human intervertebral discs using MRI.Summary Of Background DataExperiments using radiographic or optical imaging have provided important data for internal disc deformations. However, these studies are limited by physical markers and/or disruption of the disc structural integrity.MethodsMR images were acquired before and during application of a 1000 N axial compression. Two-dimensional internal displacements, average strains, and the location and direction of peak strains were calculated using texture correlation, a pattern matching algorithm.ResultsThe average height loss was 0.4 mm, which corresponded to 4.4% compressive strain. The inner AF radial displacement was outward, even with degeneration; the average outward displacement of the inner AF (0.16 mm) was less than the outer AF (0.36 mm). High shear peak strains (2%-26%) occurred near the endplate and at the inner AF. Shear was higher in the anterior AF compared to the posterior.ConclusionThis technique allows quantification of displacement and strain within the intact disc. The radial displacements of inner AF suggest NP translation under compression. Peak tensile radial strains occurred as vertical bands throughout the anulus, which may contribute to radial tears and herniations. The tensile axial and shear strains at the interface between the AF and endplate could be related to the occurrence of rim lesions. Peak strains at the endplate are likely due to the AF curvature and the oblique fibers angle at fiber insertion sites. In the future, this technique may be used to measure disc strain under a variety of loading conditions, such as bending or torsion, and could also be used to study the mechanical effects of disc degeneration and potential clinical interventions.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,642 articles already indexed!

We guarantee your privacy. Your email address will not be shared.