• Spine · May 1996

    Mechanical modulation of vertebral body growth. Implications for scoliosis progression.

    • I A Stokes, H Spence, D D Aronsson, and N Kilmer.
    • Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, USA.
    • Spine. 1996 May 15;21(10):1162-7.

    Study DesignThe authors developed a rat-tail model to investigate the hypothesis that vertebral wedging during growth in progressive spinal deformities results from asymmetric loading in a "vicious cycle."ObjectivesTo document growth curves with axial compression or distraction applied to tail vertebrae to determine whether compression load slows growth and distraction accelerates it.Summary Of Background DataProgression of skeletal deformity during growth is believed to be governed by the Hueter-Volkmann law, but there is conflicting evidence to support this idea.MethodsTwenty-eight 6-week-old Sprague-Dawley rats were assigned to one of three groups: compression loading, distraction loading, or sham (apparatus applied without loading). Under general anesthesia, two 0.7-mm diameter stainless steel percutaneous pins were used to transfix each of two vertebrae. The pins were glued to 25-mm diameter external ring fixators. Springs (load rate, 35 g/mm) were installed on three stainless steel threaded rods that were passed through holes in each ring and compressed with nuts to apply compression or distraction forces between 25-75% of bodyweight. Vertebral growth rates in microns/day were measured by digitizing the length of the vertebrae images in radiographs taken 0, 1, 3, 5, 7, and 9 weeks later.ResultsThe loaded vertebrae grew at 68% of control rate for compressed vertebrae and at 114% for distracted vertebrae. (Differences statistically significant, P < 0.01 by analysis of variance.) For the compressed vertebrae, the pinned vertebrae, which were loaded at one of their two growth cartilages, grew at a reduced rate (85%), although this effect was not apparent for the distraction animals.ConclusionsThe findings confirm that vertebral growth is modulated by loading, according to the Hueter-Volkmann principle. The quantification of this relationship will permit more rational design of conservative treatment of spinal deformity during the adolescent growth spurt.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.