-
- Richard L Lammers, Donna L Hudson, and Matthew E Seaman.
- Department of Emergency Medicine, Michigan State University/Kalamazoo Center for Medical Studies, Kalamazoo, MI 49008, USA. Lammers@KCMS.msu.edu
- Am J Emerg Med. 2003 Jan 1;21(1):1-7.
AbstractThe objective of this study was to develop and validate a decision model, using an artificial neural network, that predicts infection in uncomplicated, traumatic, sutured wounds. The study was a prospective, cohort study of all patients presenting to the emergency department of a county teaching hospital with uncomplicated wounds that required suturing. In evaluating and treating wounds, emergency medicine (EM) faculty and residents, resident physicians in primary-care specialties, and supervised medical students on EM clerkships followed a standardized wound-management protocol. Clinicians estimated the likelihood of subsequent infection using a 5-point scale. Wound healing was followed until sutures were removed. Wound outcome data were collected by medical personnel blinded to the initial prediction. Student's t-tests and Pearson's chi-square statistic were used to identify independent predictors that served as input variables. Wound infection was the single output variable. Neural network analysis was used to assign weights to input variables and derive a decision equation. A total of 1,142 wounds were analyzed in the study. The overall infection rate was 7.2%. The most predictive factors for wound infection were wound location, wound age, depth, configuration, contamination, and patient age. To derive a decision equation for the model, the network was trained on data from half of the subjects and tested on the remainder. When used as a diagnostic test for wound infection, the decision model had a sensitivity of 70%, as compared to 54% for physicians, and a specificity of 76%, as compared to 78% for physicians. We conclude that through the use of combinations of 7 clinical variables available at the time of initial wound management, a neural network-derived decision model may be used to identify uncomplicated, traumatic wounds at higher risk for infection.Copyright 2003, Elsevier Science (USA). All rights reserved.)
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.