-
Clinical Trial
Soft and rigid collars provide similar restriction in cervical range of motion during fifteen activities of daily living.
- Christopher P Miller, Jesse E Bible, Kola A Jegede, Peter G Whang, and Jonathan N Grauer.
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06520-8071, USA.
- Spine. 2010 Jun 1;35(13):1271-8.
Study DesignProspective cohort study.ObjectiveTo evaluate the relative efficacies of soft and rigid collars for restricting both the full, active and functional ranges of motion (ROM) of the cervical spine during 15 activities of daily living (ADLs).Summary Of Background DataCervical collars are frequently used for the purpose of limiting cervical motion after surgical procedures or as a treatment for certain injuries. Rigid collars are generally believed to reduce cervical motion to a greater extent than soft collars but the latter are often preferred by patients because of their greater comfort. Although there are some data to suggest that soft collars restrict full, active ROM (i.e., the extremes of motion) to a lesser degree than rigid braces, there are currently no comparative studies that have assessed the effects of these 2 types of cervical collars on the functional ROM that is required to perform multiple ADLs.MethodsIn this investigation, a previously validated electrogoniometer device was used to quantify both the full, active ROM of 10 subjects as well as the functional ROM they exhibited during a series of 15 ADLs. For each individual, these ROM measurements were repeated after the application of both a soft collar and a rigid orthosis.ResultsThe soft collar limited flexion/extension, lateral bending, and rotation by 27.1%+/-9.9% (mean+/-standard deviation), 26.1%+/-4.8%, and 29.3%+/-10.3%, respectively. The corresponding reductions in ROM with a rigid collar were 53.7%+/-7.2%, 34.9%+/-6%, and 59.2%+/-5.3%, respectively. The rigid collar resulted in significantly lower full, active ROM in both the sagittal and axial planes but not in the lateral bending plane. Compared with the soft collar, the rigid collar afforded no difference in motion during 13 of the 15 simulated ADLs. Greater motion was only noted with backing up a car and sitting from a standing position.ConclusionAlthough subjects exhibited less full, active ROM of the cervical spine when immobilized in a rigid collar than when they were placed in a soft collar, the motion recorded during various functional tasks was not significantly different for nearly all of the ADLs in this study, regardless of which cervical device was applied. One potential explanation for this finding is that both collars may serve as proprioceptive guides, which allow patients to regulate their own cervical motion based on their level of comfort. Given the paucity of data supporting the use of postoperative bracing, especially after procedures which incorporate internal fixation, this study indicates that a rigid orthosis may be unnecessary in many cases because even a soft collar seems to be sufficient for restricting motion during routine activities until the normal, physiologic ROM of the cervical spine has been restored.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.