• Anesthesiology · Jun 2016

    General Anesthesia Causes Epigenetic Histone Modulation of c-Fos and Brain-derived Neurotrophic Factor, Target Genes Important for Neuronal Development in the Immature Rat Hippocampus.

    • Lorenza Dalla Massara, Hari Prasad Osuru, Azra Oklopcic, Desanka Milanovic, Srdjan Milan Joksimovic, Valentina Caputo, Michael Robert DiGruccio, Carlo Ori, Guangfu Wang, Slobodan Milenko Todorovic, and Vesna Jevtovic-Todorovic.
    • Departments of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA.
    • Anesthesiology. 2016 Jun 1; 124 (6): 1311-1327.

    BackgroundEarly postnatal exposure to general anesthesia (GA) may be detrimental to brain development, resulting in long-term cognitive impairments. Older literature suggests that in utero exposure of rodents to GA causes cognitive impairments in the first-generation as well as in the second-generation offspring never exposed to GA. Thus, the authors hypothesize that transient exposure to GA during critical stages of synaptogenesis causes epigenetic changes in chromatin with deleterious effects on transcription of target genes crucial for proper synapse formation and cognitive development. They focus on the effects of GA on histone acetyltransferase activity of cAMP-responsive element-binding protein and the histone-3 acetylation status in the promoters of the target genes brain-derived neurotrophic factor and cellular Finkel-Biskis-Jinkins murine sarcoma virus osteosarcoma oncogene (c-Fos) known to regulate the development of neuronal morphology and function.MethodsSeven-day-old rat pups were exposed to a sedative dose of midazolam followed by combined nitrous oxide and isoflurane anesthesia for 6 h. Hippocampal neurons and organotypic hippocampal slices were cultured in vitro and exposed to GA for 24 h.ResultsGA caused epigenetic modulations manifested as histone-3 hypoacetylation (decrease of 25 to 30%, n = 7 to 9) and fragmentation of cAMP-responsive element-binding protein (two-fold increase, n = 6) with 25% decrease in its histone acetyltransferase activity, which resulted in down-regulated transcription of brain-derived neurotrophic factor (0.2- to 0.4-fold, n = 7 to 8) and cellular Finkel-Biskis-Jinkins murine sarcoma virus osteosarcoma oncogene (about 0.2-fold, n = 10 to 12). Reversal of histone hypoacetylation with sodium butyrate blocked GA-induced morphological and functional impairments of neuronal development and synaptic communication.ConclusionLong-term impairments of neuronal development and synaptic communication could be caused by GA-induced epigenetic phenomena.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.