• Acta Anaesthesiol Scand · Apr 2003

    Fluid extravasation during cardiopulmonary bypass in piglets--effects of hypothermia and different cooling protocols.

    • M Farstad, J K Heltne, S E Rynning, T Lund, A Mongstad, F Eliassen, and P Husby.
    • Departments of Anaesthesia and Intensive Care and Heart Disease, University of Bergen, Haukeland University Hospital, Bergen, Norway.
    • Acta Anaesthesiol Scand. 2003 Apr 1;47(4):397-406.

    BackgroundHypothermic cardiopulmonary bypass (CPB) is associated with capillary fluid leak and edema generation which may be secondary to hemodilution, inflammation and hypothermia. We evaluated how hypothermia and different cooling strategies influenced the fluid extravasation rate during CPB.MethodsFourteen piglets were given 60 min normothermic CPB, followed by randomization to two groups: 1: rapid cooling (RC-group) ( approximately 15 min to 28 degrees C); 2: slow cooling (SC-group) ( approximately 60 min to 28 degrees C). Ringer's solution was used as CPB prime and for fluid supplementation. Fluid input/losses, plasma volume, colloid osmotic pressures (plasma, interstitial fluid), hematocrit, serum-proteins and total tissue water (TTW) were measured and fluid extravasation rates calculated.ResultsStart of normothermic CPB resulted in a 25% hemodilution. During the first 5-10 min the fluid level of the reservoir fell markedly due to an intravascular volume loss necessitating fluid supplementation. Thereafter a steady state was reached with a constant fluid need of 0.14 +/- 0.04 ml kg-1 min-1. After start of cooling the fluid needs increased in the following 30 min to 0.91 +/- 0.11 ml kg-1 min-1 in the RC group (P < 0.001) and 0.63 +/- 0.10 ml kg-1 min-1 in the SC-group (P < 0.001) with no statistical between-group differences. Fluid extravasation rates after start of hypothermic CPB increased from 0.20 +/- 0.08 ml kg-1 min-1 to 0.71 +/- 0.13 (P < 0.01) and 0.62 +/- 0.13 ml kg-1 min-1 (P < 0.05) in the RC- and SC-groups, respectively, without any changes in degree of hemodilution. TTW increased in most tissues, whereas the intravascular albumin and protein masses remained constant with no between group differences.ConclusionHypothermia increased fluid extravasation during CPB independent of cooling strategy. Intravascular albumin and protein masses remained constant. Since inflammatory fluid leakage usually results in protein rich exudates, our data with no net protein leakage may indicate that mechanisms other than inflammation could contribute to fluid extravasation during hypothermic CPB.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.