• Anesthesiology · Oct 2009

    Basal forebrain histaminergic transmission modulates electroencephalographic activity and emergence from isoflurane anesthesia.

    • Tao Luo and L Stan Leung.
    • Department of Physiology and Pharmacology, Program in Neuroscience, The University of Western Ontario, London, Ontario, Canada.
    • Anesthesiology. 2009 Oct 1; 111 (4): 725-33.

    BackgroundThe tuberomammillary histaminergic neurons are involved in the sedative component of anesthetic action. The nucleus basalis magnocellularis (NBM) in the basal forebrain receives dense excitatory innervation from the tuberomammillary nucleus and is recognized as an important site of sleep-wake regulation. This study investigated whether NBM administration of histaminergic drugs may modulate arousal/emergence from isoflurane anesthesia.MethodsMicroinjections of histaminergic agonists and antagonists were made into the NBM of rats anesthetized with isoflurane. The changes in electroencephalographic activity, including electroencephalographic burst suppression ratio and power spectra, as well as respiratory rate, were recorded under basal conditions and after NBM injection. Time to resumption of righting reflex was recorded as a measure of emergence from anesthesia.ResultsThe rats displayed a burst suppression electroencephalographic pattern at inhaled isoflurane concentrations of 1.4-2.1%. Application of histamine (1 microg/0.5 microl) to the NBM reversed the electroencephalographic depressant effect of isoflurane; i.e., electroencephalographic activity shifted from the burst suppression pattern toward delta activity at 1.4% isoflurane, and the burst suppression ratio decreased at 2.1% isoflurane. Histamine-evoked activation of electroencephalography was blocked by NBM pretreatment with a H1 receptor antagonist, triprolidine (5 microg/1 microl), but not by a H2 receptor antagonist, cimetidine (25 microg/1 microl). The respiratory rate was significantly increased after histamine injection. NBM application of histamine facilitated, while triprolidine delayed, emergence from isoflurane anesthesia.ConclusionsHistamine activation of H1 receptors in the NBM induces electroencephalographic arousal and facilitates emergence from isoflurane anesthesia. The basal forebrain histaminergic pathway appears to play a role in modulating arousal/emergence from anesthesia.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,642 articles already indexed!

We guarantee your privacy. Your email address will not be shared.