• Spine · Sep 2000

    Biomechanical properties of anterior thoracolumbar multisegmental fixation: an analysis of construct stiffness and screw-rod strain.

    • I Oda, B W Cunningham, G A Lee, K Abumi, K Kaneda, and P C McAfee.
    • Department of Orthopaedic Surgery, Hokkaido University School of Medicine, Sapporo, Japan. odaitr@aol.com
    • Spine. 2000 Sep 15; 25 (18): 2303-11.

    Study DesignThree types of anterior thoracolumbar multisegmental fixation were biomechanically compared in construct stiffness and rod-screw strain.ObjectivesTo investigate the effects of rod diameter and rod number on construct stiffness and rod-screw strain in anterior thoracolumbar multisegmental instrumentation.Summary Of Background DataNo studies have been undertaken to investigate the biomechanical effects of rod diameter and rod number in thoracolumbar anterior instrumentation.MethodsTen fresh-frozen calf spines (T13-L5) were used. After intact analysis, a total discectomy and transection of the ALL and PLL were performed at L1-L2, L2-L3, and L3-L4 with intervertebral reconstruction using carbon fiber cages. Three types of anterior fixation were then performed at L1-L4: 1) 4.75-mm diameter single-rod, 2) 4.75-mm dual-rod, and 3) 6.35-mm single-rod systems. Single screws at each vertebra were used for single-rod and two screws for dual-rod fixation. These systems share the same basic design except rod diameter. Nondestructive biomechanical testing was performed and included compression, torsion, flexion-extension, and lateral bending. Construct stiffness and rod-screw strain of the three reconstructions were compared.ResultsThe 6.35-mm single-rod fixation significantly improved construct stiffness compared with the 4.75-mm single rod fixation only under torsion (P < 0.05). The 4. 75-mm dual rod construct resulted in significantly higher stiffness than did both single-rod fixations (P < 0.05), except under compression. No statistical differences were observed in rod-screw strain between the two types of single rods, whereas dual-rod reconstruction exhibited less rod-screw strain (P < 0.05).ConclusionsFor single-rod fixation, increased rod diameter neither markedly improved construct stiffness nor affected rod-screw strain, indicating the limitations of a single-rod system. In thoracolumbar anterior multisegmental instrumentation, the dual-rod fixation provides higher construct stiffness and less rod-screw strain compared with single-rod fixation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,662 articles already indexed!

We guarantee your privacy. Your email address will not be shared.