-
- R N Bhandari, J Ogilvie, and R W Clarke.
- Division of Animal Physiology, School of Biological Sciences, University of Nottingham, Loughborough, UK.
- Neuroscience. 1999 Apr 1; 90 (1): 177-89.
AbstractNoxious mechanical and chemical stimuli were applied to the toes of the left hind limb of decerebrated, spinalized rabbits and their effects on a hind limb spinal withdrawal reflex and expression of Fos-like immunoreactivity in the spinal cord were measured. The animals were prepared so as to minimize nociceptive inputs arising from surgery. A single crush stimulus applied with a pair of haemostatic forceps caused long-lasting (c. 20 min) inhibition of reflexes evoked in medial gastrocnemius motoneurons by electrical stimulation of the skin at the heel. Naloxone (0.25 mg/kg i.v.) increased reflexes to more than 1000% of pre-drug controls and reversed crush-evoked inhibition. Mustard oil applied to the toes had no consistent effects on the heel-gastrocnemius reflex before or after naloxone. Both crush and mustard oil stimuli gave rise to unilateral increases in the number of Fos-immunopositive profiles in the superficial dorsal horn of spinal segments L7 and S1. There were significantly more Fos-immunoreactive elements in the central and lateral parts of lamina I of both segments in animals receiving the crush stimulus than there were in animals receiving the mustard oil stimulus. Immunochemical localization of enkephalins in rabbit spinal cord showed a dense network of fibres and terminals in laminae I and II, accompanied by infrequent but distinctly stained neuronal cell bodies. The same pattern, with increased numbers of visible cell bodies, was seen after treatment with colchicine. The present data show that tonic and stimulus-evoked opioidergic inhibition of the heel-gastrocnemius reflex of the rabbit are not epiphenomena of surgical preparation of the hindlimb. Opioid-mediated inhibition of the heel-gastrocnemius withdrawal reflex of the rabbit was evoked by noxious mechanical but not by chemical stimulation of the toes. Of these stimuli, the former gave rise to greater activation of neurons in central and lateral lamina I of segments L7 and S1, the region of termination of afferent fibres from the heel and the location of some enkephalin-positive neuronal cell bodies. Thus, noxious mechanical stimulation of the toes elicits inhibition of the heel-gastrocnemius withdrawal reflex, probably via activation of enkephalinergic neurons in the lateral half of lamina I in the L7 and S1 segments.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.