• Anesthesiology · Nov 1999

    Amsorb: a new carbon dioxide absorbent for use in anesthetic breathing systems.

    • J M Murray, C W Renfrew, A Bedi, C B McCrystal, D S Jones, and J P Fee.
    • Department of Anaesthetics and Intensive Care Medicine and the School of Pharmacy, The Queen's University of Belfast, Northern Ireland. jmmurray@compuserve.com
    • Anesthesiology. 1999 Nov 1; 91 (5): 1342-8.

    BackgroundThis article describes a carbon dioxide absorbent for use in anesthesia. The absorbent consists of calcium hydroxide with a compatible humectant, namely, calcium chloride. The absorbent mixture does not contain sodium or potassium hydroxide but includes two setting agents (calcium sulphate and polyvinylpyrrolidine) to improve hardness and porosity.MethodsThe resultant mixture was formulated and subjected to standardized tests for hardness, porosity, and carbon dioxide absorption. Additionally, the new absorbent was exposed in vitro to sevoflurane, desflurane, isoflurane, and enflurane to determine whether these anesthetics were degraded to either compound A or carbon monoxide. The performance data and inertness of the absorbent were compared with two currently available brands of soda lime: Intersorb (Intersurgical Ltd., Berkshire, United Kingdom) and Dragersorb (Drager, Lubeck, Germany).ResultsThe new carbon dioxide absorbent conformed to United States Pharmacopeia specifications in terms of carbon dioxide absorption, granule hardness, and porosity. When the new material was exposed to sevoflurane (2%) in oxygen at a flow rate of 1 l/min, concentrations of compound A did not increase above those found in the parent drug (1.3-3.3 ppm). In the same experiment, mean +/-SD concentrations of compound A (32.5 +/- 4.5 ppm) were observed when both traditional brands of soda lime were used. After dehydration of the traditional soda limes, immediate exposure to desflurane (60%), enflurane (2%), and isoflurane (2%) produced concentrations of carbon monoxide of 600.0 +/- 10.0 ppm, 580.0 +/- 9.8 ppm, and 620.0 +/-10.1 ppm, respectively. In contrast, concentrations of carbon monoxide were negligible (1-3 ppm) when the anhydrous new absorbent was exposed to the same anesthetics.ConclusionsThe new material is an effective carbon dioxide absorbent and is chemically unreactive with sevoflurane, enflurane, isoflurane, and desflurane.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…