• Neuroscience · Nov 2016

    Aberrant expression of the pore-forming KATP channel subunit Kir6.2 in hippocampal reactive astrocytes in the 3xTg-AD mouse model and human Alzheimer's disease.

    • Chelsea M Griffith, Mi-Xin Xie, Wen-Ying Qiu, Andrew A Sharp, Chao Ma, Aihua Pan, Xiao-Xin Yan, and Peter R Patrylo.
    • Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University Carbondale, IL 62901, USA.
    • Neuroscience. 2016 Nov 12; 336: 81-101.

    AbstractAlzheimer's disease (AD) is a progressive neurodegenerative disease characterized by beta-amyloid (Aβ) deposition, neurofibrillary tangles and cognitive decline. Recent pharmacologic studies have found that ATP-sensitive potassium (KATP) channels may play a role in AD and could be a potential therapeutic target. Interestingly, these channels are found in both neurons and astrocytes. One of the hallmarks associated with AD is reactive gliosis and a change in astrocytic function has been identified in several neuropathological conditions including AD. Thus the goal of this study was to examine whether the pore-forming subunits of KATP channels, Kir6.1 and Kir6.2, are altered in the hippocampus in a cell type-specific manner of the 3xTg-AD mouse model of AD and in human AD tissue obtained from the Chinese brain bank. Specifically, in old 3xTg-AD mice, and age-matched controls, we examined glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), Kir6.1 and Kir6.2 in hippocampal region CA1 with a combination of immunoblotting and immunohistochemistry (IHC). A time point was selected when memory impairment and histopathological changes have been reported to occur in 3xTg-AD mice. In human AD and age-matched control tissue IHC experiments were performed using GFAP and Kir6.2. In the hippocampus of 3xTg-AD mice, compared to wild-type controls, Western blots showed a significant increase in GFAP indicating astrogliosis. Further, there was an increase in Kir6.2, but not Kir6.1 in the plasma membrane fraction. IHC examination of hippocampal region CA1 in 3xTg-AD sections revealed an increase in Kir6.2 immunoreactivity (IR) in astrocytes as identified by GFAP and GS. In human AD tissue similar data were obtained. There was an increase in GFAP-IR in the stratum oriens (SO) and alveus (ALV) of CA1 concomitant with an increase in Kir6.2-IR in cells with an astrocytic-like morphology. Dual immunofluorescence revealed a dramatic increase in co-localization of Kir6.2-IR and GFAP-IR. Taken together, these data demonstrate that increased Kir6.2 is seen in reactive astrocytes in old 3xTg-AD mice and human AD tissue. These changes could dramatically alter astrocytic function and subsequently contribute to AD phenotype in either a compensatory or pathophysiological manner.Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…