• Anesthesiology · Feb 2017

    Transient Receptor Potential Vanilloid 4 and Serum Glucocorticoid-regulated Kinase 1 Are Critical Mediators of Lung Injury in Overventilated Mice In Vivo.

    • Laura Michalick, Lasti Erfinanda, Ulrike Weichelt, Markus van der Giet, Wolfgang Liedtke, and Wolfgang M Kuebler.
    • From the Institute of Physiology (L.M., L.E., U.W., W.M.K.) and Department of Nephrology, Medizinische Klinik (M.v.d.G.), Charité-Universitaetsmedizin Berlin, Berlin, Germany; Departments of Medicine, Neurology, and Neurobiology, Duke University, Durham, North Carolina (W.L.); Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada (W.M.K.); Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada (W.M.K.); and German Heart Institute, Berlin, Germany (W.M.K.).
    • Anesthesiology. 2017 Feb 1; 126 (2): 300-311.

    BackgroundMechanical ventilation can cause lung endothelial barrier failure and inflammation cumulating in ventilator-induced lung injury. Yet, underlying mechanotransduction mechanisms remain unclear. Here, the authors tested the hypothesis that activation of the mechanosensitive Ca channel transient receptor potential vanilloid (TRPV4) by serum glucocorticoid-regulated kinase (SGK) 1 may drive the development of ventilator-induced lung injury.MethodsMice (total n = 54) were ventilated for 2 h with low (7 ml/kg) or high (20 ml/kg) tidal volumes and assessed for signs of ventilator-induced lung injury. Isolated-perfused lungs were inflated with continuous positive airway pressures of 5 or 15 cm H2O (n = 7 each), and endothelial calcium concentration was quantified by real-time imaging.ResultsGenetic deficiency or pharmacologic inhibition of TRPV4 or SGK1 protected mice from overventilation-induced vascular leakage (reduction in alveolar protein concentration from 0.84 ± 0.18 [mean ± SD] to 0.46 ± 0.16 mg/ml by TRPV4 antagonization), reduced lung inflammation (macrophage inflammatory protein 2 levels of 193 ± 163 in Trpv4 vs. 544 ± 358 pmol/ml in wild-type mice), and attenuated endothelial calcium responses to lung overdistension. Functional coupling of TRPV4 and SGK1 in lung endothelial mechanotransduction was confirmed by proximity ligation assay demonstrating enhanced TRPV4 phosphorylation at serine 824 at 18% as compared to 5% cyclic stretch, which was prevented by SGK1 inhibition.ConclusionsLung overventilation promotes endothelial calcium influx and barrier failure through a mechanism that involves activation of TRPV4, presumably due to phosphorylation at its serine 824 residue by SGK1. TRPV4 and SGK1 may present promising new targets for prevention or treatment of ventilator-induced lung injury.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.