• Anesthesiology · Jan 2018

    Effects of Changes in Arterial Carbon Dioxide and Oxygen Partial Pressures on Cerebral Oximeter Performance.

    • Andrew Schober, John R Feiner, Philip E Bickler, and Mark D Rollins.
    • From the Departments of Anesthesia and Perioperative Care (A.S., J.R.F, P.E.B., M.D.R.), Obstetrics and Gynecology, and Surgery (M.D.R.), University of California, San Francisco, California.
    • Anesthesiology. 2018 Jan 1; 128 (1): 97-108.

    BackgroundCerebral oximetry (cerebral oxygen saturation; ScO2) is used to noninvasively monitor cerebral oxygenation. ScO2 readings are based on the fraction of reduced and oxidized hemoglobin as an indirect estimate of brain tissue oxygenation and assume a static ratio of arterial to venous intracranial blood. Conditions that alter cerebral blood flow, such as acute changes in PaCO2, may decrease accuracy. We assessed the performance of two commercial cerebral oximeters across a range of oxygen concentrations during normocapnia and hypocapnia.MethodsCasmed FORE-SIGHT Elite (CAS Medical Systems, Inc., USA) and Covidien INVOS 5100C (Covidien, USA) oximeter sensors were placed on 12 healthy volunteers. The fractional inspired oxygen tension was varied to achieve seven steady-state levels including hypoxic and hyperoxic PaO2 values. ScO2 and simultaneous arterial and jugular venous blood gas measurements were obtained with both normocapnia and hypocapnia. Oximeter bias was calculated as the difference between the ScO2 and reference saturation using manufacturer-specified weighting ratios from the arterial and venous samples.ResultsFORE-SIGHT Elite bias was greater during hypocapnia as compared with normocapnia (4 ± 9% vs. 0 ± 6%; P < 0.001). The INVOS 5100C bias was also lower during normocapnia (5 ± 15% vs. 3 ± 12%; P = 0.01). Hypocapnia resulted in a significant decrease in mixed venous oxygen saturation and mixed venous oxygen tension, as well as increased oxygen extraction across fractional inspired oxygen tension levels (P < 0.0001). Bias increased significantly with increasing oxygen extraction (P < 0.0001).ConclusionsChanges in PaCO2 affect cerebral oximeter accuracy, and increased bias occurs with hypocapnia. Decreased accuracy may represent an incorrect assumption of a static arterial-venous blood fraction. Understanding cerebral oximetry limitations is especially important in patients at risk for hypoxia-induced brain injury, where PaCO2 may be purposefully altered.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.