• Neuroscience · Jan 2005

    Comparative Study

    Redistribution of CB1 cannabinoid receptors during evolution of cholinergic basal forebrain territories and their cortical projection areas: a comparison between the gray mouse lemur (Microcebus murinus, primates) and rat.

    • T Harkany, M B Dobszay, F Cayetanot, W Härtig, T Siegemund, F Aujard, and K Mackie.
    • Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Scheeles väg 1:A1, Karolinska Institutet, S-17177 Stockholm, Sweden. Tibor.Harkany@mbb.ki.se
    • Neuroscience. 2005 Jan 1; 135 (2): 595-609.

    AbstractEndocannabinoid signaling, mediated by presynaptic CB1 cannabinoid receptors on neurons, is fundamental for the maintenance of synaptic plasticity by modulating neurotransmitter release from axon terminals. In the rodent basal forebrain, CB1 cannabinoid receptor-like immunoreactivity is only harbored by a subpopulation of cholinergic projection neurons. However, endocannabinoid control of cholinergic output from the substantia innominata, coincident target innervation of cholinergic and CB1 cannabinoid receptor-containing afferents, and cholinergic regulation of endocannabinoid synthesis in the hippocampus suggest a significant cholinergic-endocannabinergic interplay. Given the functional importance of the cholinergic modulation of endocannabinoid signaling, here we studied CB1 cannabinoid receptor distribution in cholinergic basal forebrain territories and their cortical projection areas in a prosimian primate, the gray mouse lemur. Perisomatic CB1 cannabinoid receptor immunoreactivity was unequivocally present in non-cholinergic neurons of the olfactory tubercule, and in cholecystokinin-containing interneurons in layers 2/3 of the neocortex. Significantly, CB1 cannabinoid receptor-like immunoreactivity was localized to cholinergic perikarya in the magnocellular basal nucleus. However, cortical cholinergic terminals lacked detectable CB1 cannabinoid receptor levels. A dichotomy of CB1 cannabinoid receptor distribution in frontal (suprasylvian) and parietotemporal (subsylvian) cortices was apparent. In the frontal cortex, CB1 cannabinoid receptor-containing axons concentrated in layers 2/3 and layer 6, while layer 4 and layer 5 were essentially devoid of CB1 cannabinoid receptor immunoreactivity. In contrast, CB1 cannabinoid receptors decorated axons in all layers of the parietotemporal cortex with peak densities in layer 2 and layer 4. In the hippocampus, CB1 cannabinoid receptor-containing terminals concentrated around pyramidal cell somata and proximal dendrites in the CA1-CA3 areas, and granule cell dendrites in the molecular layer of the dentate gyrus. CB1 cannabinoid receptors frequently localized to inhibitory GABAergic terminals while leaving glutamatergic boutons unlabeled. Aging did not affect either the density or layer-specific distribution of CB1 cannabinoid receptor-immunoreactive processes. We concluded that organizing principles of CB1 cannabinoid receptor-containing neurons and their terminal fields within the basal forebrain are evolutionarily conserved between rodents and prosimian primates. In contrast, the areal expansion and cytoarchitectonic differentiation of neocortical subfields in primates is associated with differential cortical patterning of CB1 cannabinoid receptor-containing subcortical and intracortical afferents.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.