• Neuroscience · Jan 2005

    Expression of somatostatin receptor subtypes (SSTR1-5) in Alzheimer's disease brain: an immunohistochemical analysis.

    • U Kumar.
    • Fraser Laboratories for Diabetes Research, Department of Medicine, Royal Victoria Hospital, McGill University, Room M3-15, 687 Pine Avenue West, Montreal, Quebec, Canada H3A 1A1. ujendra.kumar@muhc.mcgill.ca
    • Neuroscience. 2005 Jan 1; 134 (2): 525-38.

    AbstractSomatostatin, widely distributed in human cortical brain regions, acts through specific high affinity somatostatin receptors (SSTR1-5) to exert profound effects on motor, sensory, behavioral, cognitive and autonomic functions. Somatostatin levels are consistently decreased in the cortex of Alzheimer's disease (AD) brain and in cerebrospinal fluid, and have become reproducible markers of this disease. In the present study, the distributional pattern of SSTR1-5 antigens in the frontal cortex of AD and age-matched control brains was studied using antipeptide polyclonal rabbit antibodies directed against the five human somatostatin receptor subtypes. All five SSTRs were differentially expressed as membrane and cytoplasmic proteins in cortical neurons with significant variations in control vs. AD brain. In AD cortical brain region, somatostatin and neuropeptide-Y-positive neurons decreased (>70%), and glial fibrillary acidic protein-positive astrocytes significantly increased (>130%) in comparison to control brain. SSTR2 and 4 were the predominant subtypes followed by SSTR1, 3 and 5. AD cortex showed a marked reduction in neuronal expression of SSTR4 and 5 and a modest decrease in SSTR2-like immunoreactivity without any changes in SSTR1 immunoreactive neurons. In contrast, SSTR3 was the only receptor subtype that increased in AD cortex. In AD cortex, SSTR1-, 3- and 4-like immunoreactivities were strongly expressed in glial cells but not SSTR2 and 5. These findings suggest the differential loss of immunoreactivity of SSTR2, 4 and 5 but not SSTR1, and increased SSTR3 in frontal cortex of AD brain as well as subtype-selective glial expression in AD brain. In summary, subtype-selective changes in the expression of SSTRs at protein levels in AD cortical regions suggest that somatostatin and SSTR-containing neurons are pathologically involved in AD and could possibly be used as markers of this disease.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…