• World Neurosurg · Dec 2018

    Retracted Publication

    Enlarged Anterior Cerebral Artery Bifurcation Angles May Induce Abnormally Enhanced Hemodynamic Stresses to Initiate Aneurysms.

    • Xue-Jing Zhang, Cong-Hui Li, Wei-Li Hao, Dong-Hai Zhang, Chun-Feng Ren, and Bu-Lang Gao.
    • Department of Neurosurgery, The First Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, China; Department of Medical Research, Shijiazhuang First Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, China.
    • World Neurosurg. 2018 Dec 1; 120: e783e791e783-e791.

    ObjectiveTo investigate the relationship of anterior cerebral artery (ACA) bifurcation angles with hemodynamic stresses for aneurysm initiation.MethodsForty patients with or without anterior communicating artery aneurysms were enrolled, and 3 patients with ACA bifurcation angles of 169.0°, 136.9°, and 73.2°, respectively, were entered into computational fluid dynamics analysis for hemodynamic stresses.ResultsLarger bifurcation angles had a larger direct flow impinging zone and larger peak pressure area. In the direct flow impinging center, the total pressure was the highest, whereas the other stresses were the lowest. As blood flowed distally, the total pressure decreased rapidly, whereas all other parameters increased quickly to their peaks. The hemodynamic peak distance was decreased as the bifurcation angle became narrower. The total pressure summit and the peak hemodynamic stresses all decreased with the decrease of bifurcation angles. The distance between the hemodynamic peaks was the smallest at 73.2° compared with larger angles. A significant (P < 0.01) positive linear correlation existed in the ACA bifurcation angle with the distance between hemodynamic stress peaks or in the ACA branch diameter with the distance from the direct impinging center to the ipsilateral hemodynamic stress peak. The hemodynamic stresses on the aneurysm dome were significantly (P < 0.001) smaller than at the aneurysm initiation site.ConclusionsLarger bifurcation angles may lead to abnormally enhanced hemodynamic stresses, enlarged zones of direct flow impingement, and increased distance between hemodynamic stress peaks to damage the vascular wall for aneurysm initiation on the bifurcation apex wall.Copyright © 2018 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.