• Anesthesiology · Oct 2018

    Supervised Machine-learning Predictive Analytics for Prediction of Postinduction Hypotension.

    • Samir Kendale, Prathamesh Kulkarni, Andrew D Rosenberg, and Jing Wang.
    • From the Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University Langone Health, New York, New York.
    • Anesthesiology. 2018 Oct 1; 129 (4): 675-688.

    What We Already Know About This TopicWHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Hypotension is a risk factor for adverse perioperative outcomes. Machine-learning methods allow large amounts of data for development of robust predictive analytics. The authors hypothesized that machine-learning methods can provide prediction for the risk of postinduction hypotension.MethodsData was extracted from the electronic health record of a single quaternary care center from November 2015 to May 2016 for patients over age 12 that underwent general anesthesia, without procedure exclusions. Multiple supervised machine-learning classification techniques were attempted, with postinduction hypotension (mean arterial pressure less than 55 mmHg within 10 min of induction by any measurement) as primary outcome, and preoperative medications, medical comorbidities, induction medications, and intraoperative vital signs as features. Discrimination was assessed using cross-validated area under the receiver operating characteristic curve. The best performing model was tuned and final performance assessed using split-set validation.ResultsOut of 13,323 cases, 1,185 (8.9%) experienced postinduction hypotension. Area under the receiver operating characteristic curve using logistic regression was 0.71 (95% CI, 0.70 to 0.72), support vector machines was 0.63 (95% CI, 0.58 to 0.60), naive Bayes was 0.69 (95% CI, 0.67 to 0.69), k-nearest neighbor was 0.64 (95% CI, 0.63 to 0.65), linear discriminant analysis was 0.72 (95% CI, 0.71 to 0.73), random forest was 0.74 (95% CI, 0.73 to 0.75), neural nets 0.71 (95% CI, 0.69 to 0.71), and gradient boosting machine 0.76 (95% CI, 0.75 to 0.77). Test set area for the gradient boosting machine was 0.74 (95% CI, 0.72 to 0.77).ConclusionsThe success of this technique in predicting postinduction hypotension demonstrates feasibility of machine-learning models for predictive analytics in the field of anesthesiology, with performance dependent on model selection and appropriate tuning.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…