• Neuroscience · Jul 2015

    Deconstructing 5-HT6 receptor effects on striatal circuit function.

    • D Eskenazi, M Brodsky, and J F Neumaier.
    • Columbia University Medical Center, New York State Psychiatric Institute, Leon Levy Neuroscience Fellowship, United States. Electronic address: eskenaz@nyspi.columbia.edu.
    • Neuroscience. 2015 Jul 23;299:97-106.

    AbstractMedium spiny neurons (MSNs) constitute 95% of neurons in the dorsal striatum subdivided into direct (striatonigral) and indirect (striatopallidal) pathways. Whereas D1 and D2 receptors and several neuropeptides, including dynorphin and enkephalin, are differentially expressed in these neurons, 5-hydroxytryptamine 6 receptors (5-HT6) are expressed in both pathways. Previous results demonstrate that concurrent 5-HT6 receptor overexpression in MSNs of both pathways in the dorsomedial striatum (DMS) interferes with instrumental learning and that 5-HT6 overexpression in the dorsolateral striatum (DLS) relieves rats from inflexible habitual behaviors. We hypothesized that 5-HT6 receptor-mediated co-activation of both pathways interferes with the differential activation/inhibition of direct/indirect pathways by dopamine. To test this idea, we cloned novel viral vectors to selectively overexpress 5-HT6 receptors in direct or indirect pathway MSNs to deconstruct their role in modulating instrumental learning and habitual responding. We found that increasing 5-HT6 receptor expression in either direct or indirect pathway MSNs of the posterior DMS selectively enhanced or impaired initial acquisition of a discrete instrumental learning task respectively, though all rats were ultimately able to learn the task. In a separate set of experiments, 5-HT6 receptor overexpression in indirect pathway MSNs of the DLS facilitated behavioral flexibility in rats overtrained on a repetitive pressing task using a variable interval schedule of reinforcement, during an omission contingency training session and subsequent probe testing. Together these findings further the notion that 5-HT6 signaling causes balanced activation of opposing MSN pathways by serotonin in sub-regions of the dorsal striatum allowing for more reflective modalities of behavior.Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,642 articles already indexed!

We guarantee your privacy. Your email address will not be shared.