• Neuroscience · Mar 2019

    Chemogenetic Targeting of Dorsomedial Direct-Pathway Striatal Projection Neurons Selectively Elicits Rotational Behavior in Mice.

    • Bay Kønig Andreas A Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-, Chiara Ciriachi, Ulrik Gether, and Mattias Rickhag.
    • Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
    • Neuroscience. 2019 Mar 1; 401: 106-116.

    AbstractThe striatum of the basal ganglia is pivotal for voluntary movements and is implicated in debilitating movement disorders such as Parkinsonism and dystonia. Striatum projects to downstream nuclei through direct (dSPN) and indirect (iSPN) pathway projection neurons thought to exert opposite effects on movement. In rodent models of striatal function, unilateral dopamine deprivation induces ipsiversive rotational behavior. The dSPNs of the dorsal striatum are believed to engage distinct motor programs but underlying mechanisms remain unclear. Here, we show by employing chemogenetics [Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)] that unilateral inhibition of dorsomedial dSPNs is sufficient to selectively impair contraversive movement and elicit ipsiversive rotational behavior in mice. Adeno-associated virus (AAV) encoding Cre-dependent Gi-coupled DREADD was injected unilaterally into the dorsomedial striatum of Drd1-Cre mice, resulting in expression of the modified human M4 muscarinic receptor (hM4Di) in ∼20% of dorsostriatal dSPNs. Upon hM4Di activation, a striking positive linear correlation was found between turn ratio and viral expression, which corroborates a relationship between unilateral inhibition of dorsomedial dSPNs and rotational behavior. Bursts of ipsiversive rotations were interspersed with normal ambulation. However, partial unilateral inhibition of ∼20% of dorsostriatal dSPNs did not affect horizontal and vertical locomotion or forelimb use preference. Overall, our results substantiate a unique role of dSPNs in promoting response bias in rotational behavior and show this to be a highly sensitive measure of dSPN performance.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…