• World Neurosurg · Dec 2018

    Implementation of Intraoperative Computed Tomography for Deep Brain Stimulation: Pitfalls and Optimization of Workflow, Accuracy, and Radiation Exposure.

    • Barbara Carl, Miriam Bopp, Marko Gjorgjevski, Carina Oehrn, Lars Timmermann, and Christopher Nimsky.
    • Department of Neurosurgery, University Marburg, Marburg, Germany. Electronic address: carlb@med.uni-marburg.de.
    • World Neurosurg. 2018 Dec 27.

    ObjectiveDeep brain stimulation (DBS) is an effective treatment for movement disorders. Stereotactic electrode placement can be guided by intraoperative imaging, which also allows for immediate intraoperative quality control. This article is about implementation and refining a workflow applying intraoperative computed tomography (iCT) for DBS.MethodsEighteen patients underwent DBS with bilateral implantation of directional electrodes applying a 32-slice movable computed tomography scanner in combination with microelectrode recording.ResultsiCT led to a significant decrease in overall procedural time, despite performing multiple scans. In 3 of the initial 5 cases, iCT caused an adjustment of the final electrodes demonstrating the learning curve and the necessity to integrate road mapping for the exchange of microelectrode to final electrode. Implementation of low-dose computed tomography protocols added microelectrode iCT to the refined workflow, resulting in an intraoperative adjustment of a trajectory in 1 patient. Low-dose protocols lowered the total effective dose to 1.15 mSv, that is, a reduction by a factor of 3.5 compared to a standard non-iCT DBS procedure, despite repeated iCTs. Intraoperative lead detection based on final iCT revealed a radial error of 1.04 ± 0.58 mm and a vector error of 2.28 ± 0.97 mm compared to the preoperative planning, adjusted by the findings of microelectrode recording.ConclusionsiCT can be easily integrated into the surgical workflow resulting in an overall efficient time-saving procedure. Repeated intraoperative scanning ensures reliable electrode placement, although low-dose scanning protocols prevent extensive radiation exposure. iCT of microelectrodes is feasible and led to the adjustment of 1 electrode.Copyright © 2019 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.