-
Review Meta Analysis
Hemodynamic effects of acute hyperoxia: systematic review and meta-analysis.
- Bob Smit, Yvo M Smulders, Johannes C van der Wouden, Oudemans-van Straaten Heleen M HM Department of Intensive Care, VU University Medical Center, De Boelelaan 1117, 1007, MB, Amsterdam, the Netherlands., and Spoelstra-de Man Angelique M E AME Department of Intensive Care, VU University Medical Center, De Boelelaan 1117, 1007, MB, Amsterdam, the Netherlands..
- Department of Intensive Care, VU University Medical Center, De Boelelaan 1117, 1007, MB, Amsterdam, the Netherlands. bob_smit@xs4all.nl.
- Crit Care. 2018 Feb 25; 22 (1): 45.
BackgroundIn clinical practice, oxygen is generally administered to patients with the intention of increasing oxygen delivery. Supplemental oxygen may, however, cause arterial hyperoxia, which is associated with hemodynamic alterations. We performed a systematic review and meta-analysis of the literature to determine the effect of hyperoxia on central hemodynamics and oxygen delivery in healthy volunteers and cardiovascular-compromised patients.MethodsPubMed and EMBASE were searched up to March 2017. Studies with adult humans investigating changes in central hemodynamics or oxygen delivery induced by acute normobaric hyperoxia were included. Studies focusing on lung, retinal, or brain parameters were not included. We extracted subject and oxygen exposure characteristics, indexed and unindexed values for heart rate, stroke volume, cardiac output, mean arterial pressure (MAP), systemic vascular resistance, and oxygen delivery during normoxia and hyperoxia. For quantitative synthesis of the data, a random-effects ratio of means (RoM) model was used.ResultsWe identified 33 studies with 42 datasets. Study categories included healthy volunteers (n = 22 datasets), patients with coronary artery disease (CAD; n = 6), heart failure (HF; n = 6), coronary artery bypass graft (CABG; n = 3) and sepsis (n = 5). Hyperoxia (arterial oxygen tension of 234-617 mmHg) reduced cardiac output (CO) by 10-15% in both healthy volunteers (-10.2%, 95% confidence interval (CI) -12.9% to -7.3%) and CAD (-9.6%, 95% CI -12.3% to -6.9%) or HF patients (-15.2%, 95% CI -21.7% to -8.2%). No significant changes in cardiac output were seen in CABG or septic patients (-3%). Systemic vascular resistance increased remarkably in patients with heart failure (24.6%, 95% CI 19.3% to 30.1%). In healthy volunteers, and those with CAD and CABG, the effect was smaller (11-16%) and was virtually absent in patients with sepsis (4.3%, 95% CI -3.2% to 12.3%). No notable effect on MAP was found in any group (2-3%). Oxygen delivery was not altered by hyperoxia. Considerable heterogeneity existed between study results, likely due to methodological differences.ConclusionsHyperoxia may considerably decrease cardiac output and increase systemic vascular resistance, but effects differ between patient categories. Heart failure patients were the most sensitive while no hemodynamic effects were seen in septic patients. There is currently no evidence supporting the notion that oxygen supplementation increases oxygen delivery.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.