-
- S Ambrosini, E Sarchielli, P Comeglio, B Porfirio, P Gallina, A Morelli, and G B Vannelli.
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
- Neuroscience. 2015 Mar 19;289:123-33.
AbstractFetal striatal transplantation has emerged as a new therapeutic strategy in Huntington's disease (HD). Hypoxia is one of the microenvironmental stress conditions to which fetal tissue is exposed as soon as it is isolated and transplanted into the diseased host brain. Mechanisms that support neuroblast survival and replenishment of damaged cells within the HD brain in the hypoxic condition have yet to be fully elucidated. This study is aimed at investigating the molecular pathways associated with the hypoxic condition in human fetal striatal neuroblasts (human striatal precursor (HSP) cells), using the hypoxia-mimetic agent cobalt chloride (CoCl2). We analyzed the effect of CoCl2 on HSP cell proliferation and on the expression of hypoxia-related proteins, such as hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF). Moreover, we evaluated fibroblast growth factor 2 (FGF2; 50ng/ml) and endothelin-1 (ET-1; 100nM) proliferative/survival effects in HSP cells in normoxic and hypoxic conditions. Dose-response experiments using increasing concentrations of CoCl2 (50-750μM) showed that the HSP cell growth was unaffected after 24h, while it increased at 48h, with the maximal effect observed at 400μM. In contrast, cell survival was impaired at 72h. Hypoxic conditions determined HIF-1α protein accumulation and increased gene and protein expression of VEGF, while FGF2 and ET-1 significantly stimulated HSP cell proliferation both in normoxic and hypoxic conditions, thus counteracting the apoptotic CoCl2 effect at 72h. The incubation with selective receptor (FGFR1, endothelin receptor A (ETA) and endothelin receptor B (ETB)) inhibitors abolished the FGF2 and ET-1 neuroprotective effect. In particular, ET-1 stimulated HSP cell survival through ETA in normoxic conditions and through ETB during hypoxia. Accordingly, ETA expression was down-regulated, while ETB expression was up-regulated by CoCl2 treatment. Overall, our results support the idea that HSP cells possess the machinery for their adaptation to hypoxic conditions and that neurotrophic factors, such as FGF2 and ET-1, may sustain neurogenesis and long-term survival through complex receptor-mediated mechanisms.Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.