• Neuroscience · Jun 1998

    Spatial frequency processing in posteromedial lateral suprasylvian cortex does not depend on the projections from the striate-recipient zone of the cat's lateral posterior-pulvinar complex.

    • K Minville and C Casanova.
    • Département de Chirurgie-Ophthalmologie, Faculté de Médecine, Université de Sherbrooke, Québec, Canada.
    • Neuroscience. 1998 Jun 1; 84 (3): 699-711.

    AbstractIt is generally considered that the posteromedial part of the cat's lateral suprasylvian cortex is involved in the analysis of image motion. The main afferents of the posteromedial lateral suprasylvian cortex come from a direct retinogeniculate pathway and indirect retinotectal and retino-geniculo-cortical pathways. Removal of the primary visual cortex does not affect the spatial and temporal processing of suprasylvian cortex cells suggesting that these properties are derived from thalamic input. We have investigated the possibility that the striate-recipient zone of the lateral posterior nucleus-pulvinar complex may be responsible for the spatial (and temporal) frequency processing in posteromedial lateral suprasylvian cortex since these two regions establish strong bidirectional connections and share many visual properties. Experiments were done on anaesthetized normal adult cats. Visual responses in suprasylvian cortex were recorded before, during, and after the deactivation of the lateral part of the lateral posterior nucleus accomplished by the injection of lidocaine or GABA. Results can be summarized as follows. A total of 64 cells was tested. Out of this number, 11 units were affected by the deactivation of the lateral part of lateral posterior nucleus and one cell, by the blockade of pulvinar. For all cells, except one, the effect consisted in a global reduction of the evoked discharge rate suggesting that the thalamo-suprasylvian cortex projections are excitatory in nature. We did not find any significant differences in the optimal spatial frequency, nor in the width of the tuning function, whether the grating was presented at half- or saturation contrast. In addition, there were no significant differences between the low- and high cut-off spatial frequency values computed before and after the deactivation of the lateral posterior nucleus. No specific changes were observed in the contrast sensitivity function of the posteromedial lateral suprasylvian cortex cells. Similar results were observed with respect to the temporal frequency tuning functions. Deactivating the lateral posterior nucleus did not modify the direction selectivity nor the organization of the subregions of the lateral suprasylvian cortex "classical" receptive fields. The absence of strong changes in posteromedial lateral suprasylvian cortex cell response properties following the functional blockade of the lateral posterior nucleus suggests that the projections from this part of the thalamus are not essential to generate the spatial characteristics of most posteromedial lateral suprasylvian cortex receptive fields. These properties may be derived from other thalamic inputs (e.g., medial interlaminar nucleus) and/or from the intrinsic computation of the afferent signals within the lateral suprasylvian cortex. On the other hand, it is possible that the lateral posterior nucleus lateral suprasylvian cortex loop may be involved in other functions such as the analysis of complex motion as suggested by the findings from our and other groups.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…