• World Neurosurg · Oct 2019

    Computational Study on Novel Natural Inhibitors Targeting O6-Methylguanine-DNA Methyltransferase (MGMT).

    • Liu Yang, Weihang Li, Yingjing Zhao, Sheng Zhong, Xinhui Wang, Shanshan Jiang, Ye Cheng, Haiyang Xu, and Gang Zhao.
    • Ultrasound Department, China-Japan Union Hospital of Jilin University, Changchun, China.
    • World Neurosurg. 2019 Oct 1; 130: e294-e306.

    ObjectiveTo screen ideal lead compounds from a drug library (ZINC15 database) with potential inhibition effect against O6-methylguanine-DNA methyltransferase (MGMT) to contribute to medication design and refinement.MethodsA series of computer-aided virtual screening techniques were used to identify potential inhibitors of MGMT. Structure-based virtual screening by LibDock was carried out to calculate LibDock scores, followed by absorption, distribution, metabolism, and excretion and toxicity predictions. Molecule docking was employed to demonstrate binding affinity and mechanism between the selected ligands and MGMT protein. Molecular dynamics simulation was performed to evaluate stability of the ligand-MGMT complex under natural circumstances.ResultsTwo novel natural compounds, ZINC000008220033 and ZINC000001529323, from the ZINC15 database were found to bind with MGMT with a higher binding affinity together with more favorable interaction energy. Also, they were predicted to have less rodent carcinogenicity, Ames mutagenicity, and developmental toxicity potential as well as noninhibition with cytochrome P-450 2D6. Molecular dynamics simulation analysis demonstrated that the 2 complexes ZINC000008220033-MGMT and ZINC000001529323-MGMT had more favorable potential energy compared with reference ligand O6-benzylguanine, and they could exist stably in the natural environment.ConclusionsThis study elucidated that ZINC000008220033 and ZINC000001529323 were ideal lead compounds with potential inhibition targeting to MGMT protein. These compounds were selected as safe drug candidates and may contribute a solid basis for MGMT target medication design and improvement.Copyright © 2019 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…