• Neuroscience · Apr 2014

    Nitric oxide is necessary for long-term facilitation of synaptic responses and for development of context memory in terrestrial snails.

    • T A Korshunova and P M Balaban.
    • Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova 26 Street, 119334 Moscow, Russian Federation; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5a Street, 117485 Moscow, Russian Federation. Electronic address: korshun_tanya@mail.ru.
    • Neuroscience. 2014 Apr 25;266:127-35.

    AbstractCorrelated electrophysiological and behavioral experiments in the snail Helix lucorum were conducted to investigate the contribution of nitric oxide (NO) to synaptic plasticity during withdrawal reflex and aversive context memory development. Time, stimulation frequency and number of tetani/electrical shocks were determined in vitro and in vivo. In isolated brain preparations, nerve tetanization accompanied by bath application of serotonin induced long-term facilitation (LTF) of the excitatory postsynaptic potential (EPSP) in withdrawal interneurons. Bathing with either the NO-synthase inhibitor N-omega-nitro-L-arginin (L-NNA) or the NO-scavenger 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl 3-oxide (PTIO) before the tetanization prevented tetanus-induced long-term increase of EPSP. Withdrawal interneurons are key elements in the network underlying aversive behavior, with LTF considered the basis for aversive learning. We hypothesized that L-NNA injections in free-behaving snails could influence aversive learning. Snails were trained for 1 or 5days to remember the context in which they were shocked. In one-day training experiments, the snails received 5 electrical shocks in one context. Different groups of snails were sham-injected or L-NNA-injected before or after training. After training, the sham-injected groups demonstrated a significant increase in behavioral responses compared to the L-NNA-injected groups. On the following day, only sham-injected snails demonstrated altered behavioral responses, but no associative context differences were observed. These results correlated with the electrophysiological results. In another series of experiments, the snails received electrical shocks for 5days. Testing on the second day after training demonstrated that the sham-injected group maintained selective aversive context memory, whereas the L-NNA-injected snails were not different between the two contexts. Together these results demonstrated that inhibition of NO synthesis prevents memory formation and influences synaptic plasticity in the withdrawal interneurons that underlie the behavioral changes. This suggests that NO influences the behavior via regulation of synaptic plasticity.Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…