• Neuroscience · Aug 2014

    Enhanced visual responses in the superior colliculus in an animal model of attention-deficit hyperactivity disorder and their suppression by D-amphetamine.

    • K M Clements, I M Devonshire, J N J Reynolds, and P G Overton.
    • Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand.
    • Neuroscience. 2014 Aug 22;274:289-98.

    AbstractAttention-deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder characterized by overactivity, impulsiveness and attentional problems, including an increase in distractibility. A structure that is intimately linked with distractibility is the superior colliculus (SC), a midbrain sensory structure which plays a particular role in the production of eye and head movements. Although others have proposed the involvement of such diverse elements as the frontal cortex and forebrain noradrenaline in ADHD, given the role of the colliculus in distractibility and the increased distractibility in ADHD, we have proposed that distractibility in ADHD arises due to collicular sensory hyper-responsiveness. To further investigate this possibility, we recorded the extracellular activity (multi-unit (MUA) and local field potential (LFP)) in the superficial visual layers of the SC in an animal model of ADHD, the New Zealand genetically hypertensive (GH) rat, in response to wholefield light flashes. The MUA and LFP peak amplitude and summed activity within a one-second time window post-stimulus were both significantly greater in GH rats than in Wistar controls, across the full range of stimulus intensities. Given that baseline firing rate did not differ between the strains, this suggests that the signal-to-noise ratio is elevated in GH animals. D-Amphetamine reduced the peak amplitude and summed activity of the multi-unit response in Wistar animals. It also reduced the peak amplitude and summed activity of the multi-unit response in GH animals, at higher doses bringing it down to levels that were equivalent to those of Wistar animals at baseline. The present results provide convergent evidence that a collicular dysfunction (sensory hyper-responsiveness) is present in ADHD, and that it may underlie the enhanced distractibility. In addition, D-amphetamine - a widely used treatment in ADHD - may have one of its loci of therapeutic action at the level of the colliculus.Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…