• Neuroscience · Aug 2014

    IL-17A contributes to brain ischemia reperfusion injury through calpain-TRPC6 pathway in mice.

    • Jiancheng Zhang, Xiaobo Mao, Ting Zhou, Xiang Cheng, and Yun Lin.
    • Department of Anesthesiology and Intensive Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
    • Neuroscience. 2014 Aug 22;274:419-28.

    AbstractInterleukin (IL)-17A plays an important role in the cerebral ischemia/reperfusion (I/R) injury. However, the mechanisms are still largely unknown. Calpain-transient receptor potential canonical (subtype) 6 (TRPC6) signaling pathway has been recently found to be implicated in brain I/R injury. However, their relationships with IL-17A remain unknown. This study aims to test whether this important signaling has correlation with IL-17A and how they led to the neuronal damage in I/R injury. In the present study, mice were subjected to middle cerebral artery occlusion (60 min) followed by reperfusion for different times. Infarct volumes and neurological deficits were examined. Real-time PCR (RT-PCR) and Western blotting were conducted to detect IL-17A expression in the penumbral brain tissue. Activation of calpain and expression of TRPC6 were also studied. We found that cerebral I/R significantly increased the levels of IL-17A at 1, 3 and 6 days after reperfusion in the penumbral area. IL-17A knockout or anti-IL-17A monoclonal antibody (mAb) significantly reduced whereas recombinant mouse-IL-17A (rIL-17A) increased the activation of calpain at 3 days after reperfusion. The calpain specific inhibitor calpeptin significantly increased TRPC6 expression. Brain injury and neurological deficits were largely abrogated by IL-17A knockout, anti-IL-17A mAb or calpeptin. Recombinant IL-17A treatment markedly increased I/R injury. In conclusion, IL-17A may promote brain I/R injury through the increase of calpain-mediated TRPC6 proteolysis. These results further outline a novel neuroprotective strategy with increased effectiveness for the inhibition of excess brain IL-17A in cerebral I/R injury.Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.