• Anesthesiology · Aug 2019

    Propofol Sedation Alters Perceptual and Cognitive Functions in Healthy Volunteers as Revealed by Functional Magnetic Resonance Imaging.

    • William L Gross, Kathryn K Lauer, Xiaolin Liu, Christopher J Roberts, Suyan Liu, Suneeta Gollapudy, Jeffrey R Binder, Shi-Jiang Li, and Anthony G Hudetz.
    • From the Departments of Anesthesiology (W.L.G., K.K.L., C.J.R., S.L., S.G.) Radiology (X.L.) Neurology (J.R.B., S.-J.L.), Medical College of Wisconsin, Milwaukee, Wisconsin the Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan (A.G.H.).
    • Anesthesiology. 2019 Aug 1; 131 (2): 254-265.

    BackgroundElucidating networks underlying conscious perception is important to understanding the mechanisms of anesthesia and consciousness. Previous studies have observed changes associated with loss of consciousness primarily using resting paradigms. The authors focused on the effects of sedation on specific cognitive systems using task-based functional magnetic resonance imaging. The authors hypothesized deepening sedation would degrade semantic more than perceptual discrimination.MethodsDiscrimination of pure tones and familiar names were studied in 13 volunteers during wakefulness and propofol sedation targeted to light and deep sedation. Contrasts highlighted specific cognitive systems: auditory/motor (tones vs. fixation), phonology (unfamiliar names vs. tones), and semantics (familiar vs. unfamiliar names), and were performed across sedation conditions, followed by region of interest analysis on representative regions.ResultsDuring light sedation, the spatial extent of auditory/motor activation was similar, becoming restricted to the superior temporal gyrus during deep sedation. Region of interest analysis revealed significant activation in the superior temporal gyrus during light (t [17] = 9.71, P < 0.001) and deep sedation (t [19] = 3.73, P = 0.001). Spatial extent of the phonologic contrast decreased progressively with sedation, with significant activation in the inferior frontal gyrus maintained during light sedation (t [35] = 5.17, P < 0.001), which didn't meet criteria for significance in deep sedation (t [38] = 2.57, P = 0.014). The semantic contrast showed a similar pattern, with activation in the angular gyrus during light sedation (t [16] = 4.76, P = 0.002), which disappeared in deep sedation (t [18] = 0.35, P = 0.731).ConclusionsResults illustrate broad impairment in cognitive cortex during sedation, with activation in primary sensory cortex beyond loss of consciousness. These results agree with clinical experience: a dose-dependent reduction of higher cognitive functions during light sedation, despite partial preservation of sensory processes through deep sedation.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…