• Neuroscience · Sep 2019

    ROS-Mediated Mitochondrial Dysfunction and ER Stress Contribute to Compression-Induced Neuronal Injury.

    • Tao Chen, Jie Zhu, Yu-Hai Wang, and Chun-Hua Hang.
    • Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000, China; Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu 214044, China.
    • Neuroscience. 2019 Sep 15; 416: 268-280.

    AbstractIntracranial hypertension (IH) is a medical or surgical emergency that can be the common ending of various neurological disorders, such as traumatic brain injury, cerebral vascular diseases and brain tumors. However, the molecular mechanisms underlying IH-induced neuronal apoptosis have not been fully determined, and the treatments are symptomatic, insufficient and complicated by side-effects. In this study, a cellular model induced by compressed gas treatment in primary cultured rat cortical neurons was performed to mimic IH-induced neuronal injury in vitro. We found that compression induced cytotoxicity and apoptosis in cortical neurons in a dose- and time-dependent manner. Compression resulted in oxidative stress, which could be prevented by the ROS scavenger N-acetylcysteine (NAC). Compression produced mitochondrial oxidative stress, ATP loss and mitochondrial fragmentation. The results of western blot showed that compression differently regulated the expression of mitochondrial dynamic proteins, and the Drp1 inhibitor mdivi-1 partially reversed the compression-induced cytotoxicity. Compression significantly increased the expression of ER stress-associated factors in a time-dependent manner. The results of calcium imaging showed that compression induced intracellular calcium overload via promoting ER calcium release. Furthermore, the results using inhibitors of each signaling pathway demonstrated that ROS mediated the compression-induced ER stress and mitochondrial dysfunction in cortical neurons. In conclusion, our results demonstrated that compression induced apoptosis in primary cultured cortical neurons, which was associated with ROS mediated ER stress and mitochondrial dysfunction. Pharmacological compounds or agents targeting mitochondrial dysfunction and ER stress associated oxidative stress might be ideal candidates for the treatment of IH-related neurological diseases.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…