• Neuroscience · Oct 2013

    Neuroprotective effects of mesenchymal stem cells on spinal motoneurons following ventral root axotomy: synapse stability and axonal regeneration.

    • A B Spejo, J L Carvalho, A M Goes, and A L R Oliveira.
    • Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), CP 6109, CEP 13083-970 Campinas, SP, Brazil.
    • Neuroscience. 2013 Oct 10;250:715-32.

    AbstractCompression of spinal roots is an important medical problem, which may arise from intervertebral disc herniation, tumor growth or as a result of high energy accidents. Differently from avulsion, root crushing maintains the central/peripheral nervous system (CNS/PNS) connection, although the axons are axotomized and motoneurons degenerate. Such neuronal death may decrease and delay motor function recovery. In the present study we have investigated the neuroprotective effects of mesenchymal stem cell (MSC) therapy following such proximal lesions. Motor recovery and synaptic stabilization were analyzed by the use of morphological and functional approaches. For that, crushing the ventral roots at L4, L5 and L6 was unilaterally performed in Lewis rats. Four weeks after injury, an increased motoneuron survival was observed in the MSC-treated group, coupled with a smaller decrease of inputs at the motoneuron surface and nearby neuropil, seen by synaptophysin and synapsin immunolabeling and decreased astrogliosis, seen by GFAP immunolabeling. In this sense, MSC-treated group displayed a significant preservation of GABAergic terminals, indicating a possible neuroprotection to glutamate excitotoxicity. Motor function recovery was acutely improved in MSC-treated group as compared to Dulbeco's modified eagle medium (DMEM)-treated. Overall, we provide evidence that ventral root crushing (VRC), although milder than avulsion, results in significant loss of motoneurons (~51%) that can be reduced by MSC administration within the spinal cord. Such treatment also improves the number of synapses immunoreactive against molecules present in inhibitory inputs. Also, an increased number of regenerated axons was obtained in the MSC-treated group, in comparison to the DMEM-treated control. Overall, MSC therapy acutely improved limb strength and gait coordination, indicating a possible clinical application of such treatment following proximal lesions at the CNS/PNS interface.Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…