• Anesthesiology · May 2009

    Comparative Study

    Neuronal preconditioning by inhalational anesthetics: evidence for the role of plasmalemmal adenosine triphosphate-sensitive potassium channels.

    • Carsten Bantel, Mervyn Maze, and Stefan Trapp.
    • Department of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital, Imperial College London, London, UK.
    • Anesthesiology. 2009 May 1; 110 (5): 986-95.

    BackgroundIschemic preconditioning is an important intrinsic mechanism for neuroprotection. Preconditioning can also be achieved by exposure of neurons to K+ channel-opening drugs that act on adenosine triphosphate-sensitive K+ (K(ATP)) channels. However, these agents do not readily cross the blood-brain barrier. Inhalational anesthetics which easily partition into brain have been shown to precondition various tissues. Here, the authors explore the neuronal preconditioning effect of modern inhalational anesthetics and investigate their effects on K(ATP) channels.MethodsNeuronal-glial cocultures were exposed to inhalational anesthetics in a preconditioning paradigm, followed by oxygen-glucose deprivation. Increased cell survival due to preconditioning was quantified with the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide reduction test. Recombinant plasmalemmal K(ATP) channels of the main neuronal type (Kir6.2/SUR1) were expressed in HEK293 cells, and the effects of anesthetics were evaluated in whole cell patch clamp recordings.ResultsBoth sevoflurane and the noble gas xenon preconditioned neurons at clinically used concentrations. The effect of sevoflurane was independent of K(ATP) channel activation, whereas the effect of xenon required the opening of plasmalemmal K(ATP) channels. Recombinant K(ATP) channels were activated by xenon but inhibited by halogenated volatiles. Modulation of mitochondrial K-ATP channels did not affect the activity of K(ATP) channels, thus ruling out an indirect effect of volatiles via mitochondrial channels.ConclusionsThe preconditioning properties of halogenated volatiles cannot be explained by their effect on K(ATP) channels, whereas xenon preconditioning clearly involves the activation of these channels. Therefore, xenon might mimic the intrinsic mechanism of ischemic preconditioning most closely. This, together with its good safety profile, might suggest xenon as a viable neuroprotective agent in the clinical setting.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,642 articles already indexed!

We guarantee your privacy. Your email address will not be shared.