• Neuroscience · Jan 2013

    The low-frequency blood oxygenation level-dependent functional connectivity signature of the hippocampal-prefrontal network in the rat brain.

    • A J Schwarz, N Gass, A Sartorius, L Zheng, M Spedding, E Schenker, C Risterucci, A Meyer-Lindenberg, and W Weber-Fahr.
    • Tailored Therapeutics Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA. a.schwarz@lilly.com
    • Neuroscience. 2013 Jan 3;228:243-58.

    AbstractInteractions between the hippocampus and the prefrontal cortex (PFC) are of major interest in the neurobiology of psychiatric and neurodegenerative disorders and are central to many experimental rodent models. Non-invasive imaging techniques offer a translatable approach to probing this system if homologous features can be identified across species. The objective of the present study was to systematically characterize the rat brain connectivity signature derived from low-frequency resting blood oxygenation level-dependent (BOLD) oscillations associated with and within the hippocampal-prefrontal network, using an array of small seed locations within the relatively large anatomical structures comprising this system. A heterogeneous structure of functional connectivity, both between and within the hippocampal-prefrontal brain structures, was observed. In the hippocampal formation, the posterior (subiculum) region correlated more strongly than the anterior dorsal hippocampus with the PFC. A homologous relationship was found in the human hippocampus, with differential functional connectivity between hippocampal locations proximal to the fornix body relative to locations more distal being localized to the medial prefrontal regions in both species. The orbitofrontal cortex correlated more strongly with sensory cortices and a heterogeneous dependence of functional coupling on seed location was observed along the midline cingulate and retrosplenial cortices. These findings are all convergent with known anatomical connectivity, with stronger BOLD correlations corresponding to known monosynaptic connections. These functional connectivity relationships may provide a useful translatable probe of the hippocampal-prefrontal system for the further study of rodent models of disease and potential treatments, and inform electrode placement in electrophysiology to yield more precise descriptors of the circuits at risk in psychiatric disease.Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.