• Spine · Apr 2020

    A Review of Techniques, Time Demand, Radiation Exposure, and Outcomes of Skin-anchored Intraoperative 3D Navigation in Minimally Invasive Lumbar Spinal Surgery.

    • Avani S Vaishnav, Robert K Merrill, Harvinder Sandhu, Steven J McAnany, Sravisht Iyer, Catherine Himo Gang, Todd J Albert, and Sheeraz A Qureshi.
    • Hospital for Special Surgery, New York, NY.
    • Spine. 2020 Apr 15; 45 (8): E465E476E465-E476.

    Study DesignRetrospective cohort.ObjectiveTo describe our technique for and evaluate the time demand, radiation exposure and outcomes of skin-anchored intraoperative three-dimensional navigation (ION) in minimally invasive (MIS) lumbar surgery, and to compare these parameters to 2D fluoroscopy for MI-TLIF.Summary Of Background DataLimited visualization of anatomic landmarks and narrow access corridor in MIS procedures result in greater reliance on image guidance. Although two-dimensional fluoroscopy has historically been used, ION is gaining traction.MethodsPatients who underwent MIS lumbar microdiscectomy, laminectomy, or MI-TLIF using skin-anchored ION and MI-TLIF by the same surgeon using 2D fluoroscopy were selected. Operative variables, radiation exposure, and short-term outcomes of all procedures were summarized. Time-demand and radiation exposure of fluoroscopy and ION for MI-TLIF were compared.ResultsOf the 326 patients included, 232 were in the ION cohort (92 microdiscectomies, 65 laminectomies, and 75 MI-TLIFs) and 94 in the MI-TLIF using 2D fluoroscopy cohort. Time for ION setup and image acquisition was a median of 22 to 24 minutes. Total fluoroscopy time was a median of 10 seconds for microdiscectomy, 9 for laminectomy, and 26 for MI-TLIF. Radiation dose was a median of 15.2 mGy for microdiscectomy, 16.6 for laminectomy, and 44.6 for MI-TLIF, of this, 93%, 95%, and 37% for microdiscectomy, laminectomy, and MI-TLIF, respectively were for ION image acquisition, with the rest attributable to the procedure. There were no wrong-level surgeries. Compared with fluoroscopy, ION for MI-TLIF resulted in lower operative times (92 vs. 108 min, P < 0.0001), fluoroscopy time (26 vs. 144 s, P < 0.0001), and radiation dose (44.6 vs. 63.1 mGy, P = 0.002), with equivalent time-demand and length of stay. ION lowered the radiation dose by 29% for patients and 55% for operating room personnel.ConclusionSkin-anchored ION does not increase time-demand compared with fluoroscopy, is feasible, safe and accurate, and results in low radiation exposure.Level Of Evidence3.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.