• Neuroscience · Nov 2019

    Transient Receptor Potential Vanilloid 3 (TRPV3) in the Cerebellum of Rat and Its Role in Motor Coordination.

    • Uday Singh, Manoj Upadhya, Sumela Basu, Omprakash Singh, Santosh Kumar, Dadasaheb M Kokare, and Praful S Singru.
    • School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
    • Neuroscience. 2019 Nov 7.

    AbstractThermosensitive transient receptor potential vanilloid (TRPV) channels are widely expressed in the brain and known to profoundly influence Ca2+-signaling, neurotransmitter release and behavior. While these channels are expressed in the cerebellum, neuronal firing and hyperactivity/reflexes seem associated with cerebellar temperature modulation. However, the distribution and functional significance of TRPV-equipped elements in the cerebellum has remained unexplored. Among TRPV sub-family, TRPV3 is regulated by temperature within physiological range and its transcript highly expressed in the brain. The study aims at exploring the relevance of TRPV3 in the cerebellum of developing and adult rat. RT-PCR analysis showed expression of N- and C-terminal fragments of TRPV3-mRNA in the adult rat cerebellum. Using double immunofluorescence, TRPV3-immunoreactivity was observed in Calbindin D28K-labeled Purkinje neurons. The sections of cerebellum from the postnatal rats (P4, P8, P16 and P42) were processed for TRPV3-immunofluorescence. Compared to P4 and P8, the percent fluorescent area of TRPV3-immunoreactivity significantly increased in the cerebellum of P16 and P42 rats. With a view to test the significance of TRPV3 in cerebellar function, TRPV3-agonist (eugenol) or -inhibitors [ruthenium red or isopentenyl pyrophosphate (IPP)] were administered stereotaxically intra-cerebellum and motor responses analyzed. Compared to controls, rats injected with TRPV3 inhibitor significantly reduced the stride length (P < 0.001), locomotor activity (P < 0.001), and rotarod retention time (P < 0.001), but increased footprints length (P < 0.01) and escape latency (P < 0001). TRPV3-agonist treatment, however, had no effect on these behaviors. We suggest that TRPV3 in Purkinje neurons may serve as novel molecular component for Ca2+-signaling and motor coordination function of the cerebellum.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text  

      Add institutional full text...

    Notes

     
    Do you have a pearl, summary or comment to save or share?
    250 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
856,928 articles already indexed!

We guarantee your privacy. Your email address will not be shared.