• Anesthesiology · Feb 2020

    Comparative Study

    Static and Dynamic Transpulmonary Driving Pressures Affect Lung and Diaphragm Injury during Pressure-controlled versus Pressure-support Ventilation in Experimental Mild Lung Injury in Rats.

    • Eliete F Pinto, Raquel S Santos, Mariana A Antunes, Ligia A Maia, Gisele A Padilha, Joana de A Machado, Anna C F Carvalho, Marcos V S Fernandes, Vera L Capelozzi, Marcelo Gama de Abreu, Paolo Pelosi, RoccoPatricia R MPRM, and Pedro L Silva.
    • From the Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil (E.F.P., R.S.S., M.A.A., L.A.M., G.A.P., J.D.A.M., A.C.F.C., M.V.S.F., P.R.M.R., P.L.S.) Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil (V.L.C.) Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care Therapy, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany (M.G.D.A.) Department of Integrated Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy (P.P.) Institute of Admission and Care of a Scientific Nature, San Martino Policlinico Hospital, Genoa, Italy (P.P.).
    • Anesthesiology. 2020 Feb 1; 132 (2): 307320307-320.

    BackgroundPressure-support ventilation may worsen lung damage due to increased dynamic transpulmonary driving pressure. The authors hypothesized that, at the same tidal volume (VT) and dynamic transpulmonary driving pressure, pressure-support and pressure-controlled ventilation would yield comparable lung damage in mild lung injury.MethodsMale Wistar rats received endotoxin intratracheally and, after 24 h, were ventilated in pressure-support mode. Rats were then randomized to 2 h of pressure-controlled ventilation with VT, dynamic transpulmonary driving pressure, dynamic transpulmonary driving pressure, and inspiratory time similar to those of pressure-support ventilation. The primary outcome was the difference in dynamic transpulmonary driving pressure between pressure-support and pressure-controlled ventilation at similar VT; secondary outcomes were lung and diaphragm damage.ResultsAt VT = 6 ml/kg, dynamic transpulmonary driving pressure was higher in pressure-support than pressure-controlled ventilation (12.0 ± 2.2 vs. 8.0 ± 1.8 cm H2O), whereas static transpulmonary driving pressure did not differ (6.7 ± 0.6 vs. 7.0 ± 0.3 cm H2O). Diffuse alveolar damage score and gene expression of markers associated with lung inflammation (interleukin-6), alveolar-stretch (amphiregulin), epithelial cell damage (club cell protein 16), and fibrogenesis (metalloproteinase-9 and type III procollagen), as well as diaphragm inflammation (tumor necrosis factor-α) and proteolysis (muscle RING-finger-1) were comparable between groups. At similar dynamic transpulmonary driving pressure, as well as dynamic transpulmonary driving pressure and inspiratory time, pressure-controlled ventilation increased VT, static transpulmonary driving pressure, diffuse alveolar damage score, and gene expression of markers of lung inflammation, alveolar stretch, fibrogenesis, diaphragm inflammation, and proteolysis compared to pressure-support ventilation.ConclusionsIn the mild lung injury model use herein, at the same VT, pressure-support compared to pressure-controlled ventilation did not affect biologic markers. However, pressure-support ventilation was associated with a major difference between static and dynamic transpulmonary driving pressure; when the same dynamic transpulmonary driving pressure and inspiratory time were used for pressure-controlled ventilation, greater lung and diaphragm injury occurred compared to pressure-support ventilation.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…