• Neuroscience · May 2012

    Amyloid beta selectively modulates neuronal TrkB alternative transcript expression with implications for Alzheimer's disease.

    • J Wong, M Higgins, G Halliday, and B Garner.
    • Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia. jwong@uow.edu.au
    • Neuroscience. 2012 May 17;210:363-74.

    AbstractDysregulation in brain-derived neurotrophic factor (BDNF)/full-length TrkB (TrkB-TK+) signaling is implicated in promoting neurodegeneration in Alzheimer's disease (AD). BDNF/TrkB-TK+ signaling can be modulated by the presence of truncated TrkB isoforms (TrkB-TK-, TrkB-Shc). All TrkB isoforms are encoded by different alternative transcripts. In this study, we assessed if expression of the three main TrkB alternative transcripts, TrkB-TK+, TrkB-TK-, and TrkB-Shc are altered in AD. Using a cohort of control and AD brains (n=29), we surveyed the hippocampus, temporal cortex, occipital cortex, and cerebellum and found specific increases in TrkB-Shc, a neuron-specific transcript, in the AD hippocampus. No significant changes were detected in TrkB-TK+ and TrkB-TK- transcript levels in AD in any brain region examined. Corresponding changes in truncated TrkB protein levels were found in the hippocampus, although a significant increase in the temporal cortex was also observed. Our findings suggested that neuron-specific changes in TrkB may be occurring in AD; thus, we determined whether TrkB-Shc expression could be modulated by amyloid beta 1-42 (Aβ(42)). We found increased TrkB-Shc mRNA levels in differentiated SHSY5Y neuronal cell-lines exposed to fibril-containing Aβ(42) preparations. When we assessed the cellular impact of increased TrkB-Shc, we found co-localization between TrkB-Shc and TrkB-TK+. Interestingly, TrkB-Shc overexpression selectively attenuated BDNF/TrkB-TK+-mediated signaling via the mitogen-activated protein kinase kinase (MEK) pathway, but not the protein kinase B pathway. In AD, MEK signaling is increased in vulnerable neurons and linked to abnormal phosphorylation of cytoskeletal proteins. Altogether, our findings suggest that elevated TrkB-Shc expression in AD may function as a compensatory response in neurons in AD to promote survival.Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?

    User can't be blank.

    Content can't be blank.

    Content is too short (minimum is 15 characters).

    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.