• Neuroscience · Jul 2020

    Atomoxetine Reestablishes Long Term Potentiation in a Mouse Model of Attention Deficit/Hyperactivity Disorder.

    • Ricardo Piña, Carlos Rozas, Darwin Contreras, Paulina Hardy, Gonzalo Ugarte, Marc L Zeise, Patricio Rojas, and Bernardo Morales.
    • Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile; Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo ÓHiggins, Santiago, Chile.
    • Neuroscience. 2020 Jul 15; 439: 268-274.

    AbstractAttention deficit/hyperactivity disorder (ADHD) is the most prevalent psychiatric childhood disorder, characterized by hyperactivity, impulsivity and impaired attention, treated most frequently with methylphenidate (MPH). For children and adults with ADHD who do not respond satisfactorily or do not tolerate well stimulants such as MPH or D-Amphetamine, for them the alternative is to use Atomoxetine (ATX), a norepinephrine (NE) transporter inhibitor that increase extracellular NE. We examined the effects of ATX on behavior and hippocampal synaptic plasticity in the murine prenatal nicotine exposure (PNE) model of ADHD. ADHD symptoms were measured using behavioral tests, open field for hyperactivity and the Y-maze for spatial working memory. Further, ATX effects on long-term potentiation (LTP) in hippocampal slices at the CA3-CA1 synapse were assessed. PNE mice exhibited the behavioral deficits of ADHD, hyperactivity and spatial memory impairment. Intraperitoneal injection of ATX (2 mg/kg/day) normalized these behaviors significantly after 7 days. In PNE mice LTP was reduced (110.6 ± 4.5% %; n = 7) compared to controls (148.9 ± 5.2%; n = 7; p < 0.05). ATX administration (5 µM) reestablished the LTP in PNE mice to levels similar to the controls (157.7 ± 6.3%; n = 7). Paired-pulse ratios (PPR) were not significantly different for any condition. These results indicate that administration of ATX in a PNE model of ADHD reestablishes TBS-dependent LTP in CA3-CA1 synapses. The results suggest postsynaptic changes in synaptic plasticity as part of the mechanisms that underlie improvement of ADHD symptoms induced by ATX.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.