• Neuroscience · Aug 2012

    Generation of the VESPA response to rapid contrast fluctuations is dominated by striate cortex: evidence from retinotopic mapping.

    • E C Lalor, S P Kelly, and J J Foxe.
    • The Cognitive Neurophysiology Laboratory, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA. edlalor@tcd. ie
    • Neuroscience. 2012 Aug 30;218:226-34.

    AbstractThe VESPA (visual-evoked spread spectrum analysis) method derives an impulse response function of the visual system from scalp electroencephalographic (EEG) data using the controlled modulation of some feature of a visual stimulus. Recent research using VESPA responses to modulations of stimulus contrast has provided new insights into both early visual attention mechanisms and the specificity of visual-processing deficits in schizophrenia. To allow a fuller interpretation of these and future findings, it is necessary to further characterize the VESPA in terms of its underlying cortical generators. To that end, we here examine spatio-temporal variations in the components of the VESPA as a function of stimulus location. We found that the first two VESPA components (C1/P1) each have a posterior dorsal midline focus and reverse in polarity across the horizontal meridian, consistent with retinotopic projections to calcarine cortex (V1) for the stimulus locations tested. Furthermore, the focal scalp topography of the VESPA was strikingly constant across the entire C1-P1 timeframe (50-120 ms) for each stimulus location, with negligible global scalp activity visible at the zero-crossing dividing the two. This indicates a common focal source underpinning both components, which was further supported by a significant correlation between C1 and P1 amplitudes across subjects (r=0.54; p<0.05). These results, along with factors implicit in the method of derivation of the contrast-VESPA, lead us to conclude that these responses are dominated by activity from striate cortex. We discuss the implications of this finding for previous and future research using the VESPA.Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.