• J Neurosurg Anesthesiol · Oct 2021

    Extracellular Glutamate Concentration Increases Linearly in Proportion to Decreases in Residual Cerebral Blood Flow After the Loss of Membrane Potential in a Rat Model of Ischemia.

    • Hirokazu Kawase, Yoshimasa Takeda, Ryoichi Mizoue, Sachiko Sato, Miki Fushimi, Satoshi Murai, and Hiroshi Morimatsu.
    • Departments of Anesthesiology.
    • J Neurosurg Anesthesiol. 2021 Oct 1; 33 (4): 356-362.

    BackgroundBrain ischemia due to disruption of cerebral blood flow (CBF) results in increases in extracellular glutamate concentration and neuronal cell damage. However, the impact of CBF on glutamate dynamics after the loss of the membrane potential remains unknown.Materials And MethodsTo determine this impact, we measured extracellular potential, CBF, and extracellular glutamate concentration in the parietal cortex in male Sprague-Dawley rats (n=21). CBF was reduced by bilateral occlusion of the common carotid arteries and exsanguination until loss of extracellular membrane potential was observed (low-flow group), or until CBF was further reduced by 5% to 10% of preischemia levels (severe-low-flow group). CBF was promptly restored 10 minutes after the loss of membrane potential. Histologic outcomes were evaluated 5 days later.ResultsExtracellular glutamate concentration in the low-flow group was significantly lower than that in the severe-low-flow group. Moreover, increases in extracellular glutamate concentration exhibited a linear relationship with decreases in CBF after the loss of membrane potential in the severe-low-flow group, and the percentage of damaged neurons exhibited a dose-response relationship with the extracellular glutamate concentration. The extracellular glutamate concentration required to cause 50% neuronal damage was estimated to be 387 μmol/L, at 8.7% of preischemia CBF. Regression analyses revealed that extracellular glutamate concentration increased by 21 μmol/L with each 1% decrease in residual CBF and that the percentage of damaged neurons increased by 2.6%.ConclusionOur results indicate that residual CBF is an important factor that determines the extracellular glutamate concentration after the loss of membrane potential, and residual CBF would be one of the important determinants of neuronal cell prognosis.Copyright © 2019 Wolters Kluwer Health, Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.