• Neuroscience · Sep 2012

    Strong neuroprotection with a novel platinum nanoparticle against ischemic stroke- and tissue plasminogen activator-related brain damages in mice.

    • M Takamiya, Y Miyamoto, T Yamashita, K Deguchi, Y Ohta, and K Abe.
    • Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan. motonori@cc.okayama-u.ac.jp
    • Neuroscience. 2012 Sep 27;221:47-55.

    AbstractReactive oxygen species (ROS) are major exacerbation factor in acute ischemic stroke, and thrombolytic agent tissue plasminogen activator (tPA) may worsen motor function and cerebral infarcts. The platinum nanoparticle (nPt) is a novel ROS scavenger, and thus we examined the clinical and neuroprotective effects of nPt in ischemic mouse brains. Mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min and divided into the following four groups by intravenous administration upon reperfusion, vehicle, tPA, tPA+nPt, and nPt. At 48 h after tMCAO, motor function, infarct volume, immunohistochemical analyses of neurovascular unit (NVU), in vivo imaging of matrix metalloproteinase (MMP), and zymography for MMP-9 activity were examined. Superoxide anion generation at 2h after tMCAO was also examined with hydroethidine (HEt). As a result, administration of tPA deteriorated the motor function and infarct volume as compared to vehicle. In vivo optical imaging of MMP showed strong fluorescent signals in affected regions of tMCAO groups. Immunohistochemical analyses revealed that tMCAO resulted in a minimal decrease of NAGO and occludin, but a great decrease of collagen IV and a remarkable increase of MMP-9. HEt stain showed increased ROS generation by tMCAO. All these results became pronounced with tPA administration, and were greatly reduced by nPt. The present study demonstrates that nPt treatment ameliorates neurological function and brain damage in acute cerebral infarction with neuroprotective effect on NVU and inactivation of MMP-9. The strong reduction of ROS production by nPt could account for these remarkable neurological and neuroprotective effects against ischemic stroke.Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…